• Title/Summary/Keyword: $weak^{*}$ integral

Search Result 98, Processing Time 0.034 seconds

Efficient finite element model for dynamic analysis of laminated composite beam

  • Naushad Alam, M.;Upadhyay, Nirbhay Kr.;Anas, Mohd.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.471-488
    • /
    • 2012
  • An efficient one dimensional finite element model has been presented for the dynamic analysis of composite laminated beams, using the efficient layerwise zigzag theory. To meet the convergence requirements for the weak integral formulation, cubic Hermite interpolation is used for the transverse displacement ($w_0$), and linear interpolation is used for the axial displacement ($u_0$) and shear rotation (${\psi}_0$). Each node of an element has four degrees of freedom. The expressions of variationally consistent inertia, stiffness matrices and the load vector are derived in closed form using exact integration. The formulation is validated by comparing the results with the 2D-FE results for composite symmetric and sandwich beams with various end conditions. The employed finite element model is free of shear locking. The present zigzag finite element results for natural frequencies, mode shapes of cantilever and clamped-clamped beams are obtained with a one-dimensional finite element codes developed in MATLAB. These 1D-FE results for cantilever and clamped beams are compared with the 2D-FE results obtained using ABAQUS to show the accuracy of the developed MATLAB code, for zigzag theory for these boundary conditions. This comparison establishes the accuracy of zigzag finite element analysis for dynamic response under given boundary conditions.

Cavitation optimization of single-orifice plate using CFD method and neighborhood cultivation genetic algorithm

  • Zhang, Yu;Lai, Jiang;He, Chao;Yang, Shihao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1835-1844
    • /
    • 2022
  • Single-orifice plate is wildly utilized in the piping system of the nuclear power plant to throttle and depressurize the fluid of the pipeline. The cavitation induced by the single-orifice plate may cause some serious vibration of the pipeline. This study aims to find the optimal designs of the single-orifice plates that may have weak cavitation possibilities. For this purpose, a new single-orifice plate with a convergent-flat-divergent hole was modeled, a multi-objective optimization method was proposed to optimize the shape of a single-orifice plate, while computational fluid dynamics method was adopted to obtain the fluid physical quantities. The reciprocal cavitation number and the developmental integral were treated as cavitation indexes (e.g., objectives for the optimization algorithm). Two non-dominant designs ultimately achieved illustrated obvious reduction in the cavitation indexes at a Reynolds number Re = 1 ×105 defined based on fluid velocity. Besides, the sensitivity analysis and temperature effects were also performed. The results indicated that the convergent angle of the single-orifice plate dominants the cavitation behavior globally. The optimal designs of single-orifice plates result in lower downstream jet areas and lower upstream pressure. For a constant Reynolds number, the higher temperature of liquid water, the easier it is to undergo cavitation. Whereas there is a diametric phenomenon for a constant fluid velocity. Moreover, the regression models were carried out to establish the mathematical relation between temperature and cavitation indexes.

Large deformation performance of the anti-seepage system connection part in earth core dam built on thick overburden

  • Yu, Xiang;Wang, Gan;Wang, Yuke;Du, Xueming;Qu, Yongqian
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.683-696
    • /
    • 2022
  • Dams are inevitably planned to be built on thick overburden with high permeability and deformability. The connection part between concrete cut-off wall in overburden and earth core in dam body is not only a key part of the anti-seepage system, but also a weak position. Large uneven settlement will be aroused at the concoction part. However, the interaction behavior and the scope of the connection part cannot be determined effectively. In this paper, numerical analysis of a high earth core dam built on thick overburden was carried out with large deformation FE method. The mechanical behavior of the connection part was detail studied. It can be drawn that there is little differences in dam integral deformation for different analysis method, but big differences were found at the connection part. The large deformation analysis method can reasonably describe the process that concrete wall penetrates into soil. The high plasticity clay has stronger ability to adapt to large uneven deformation which can reduce stress level, and stress state of concrete wall is also improved. The scope of high plasticity clay zone in the connection part can be determined according to stress level of soils and penetration depth of concrete wall.

Optimization of lateral resisting system of framed tubes combined with outrigger and belt truss

  • Mohammadnejad, Mehrdad;Kazemi, Hasan Haji
    • Advances in Computational Design
    • /
    • v.7 no.1
    • /
    • pp.19-35
    • /
    • 2022
  • In this paper, the optimum location of the belt truss-outrigger for a combined system of framed tube, shear core and outrigger-belt truss is calculated. The optimum location is determined by maximization of the first natural frequency. The framed tube is modeled using a non-prismatic cantilever beam with hollow box cross section. The governing differential equation is solved using the weak form integral equations and the natural frequencies of the structure are calculated. The graphs are introduced for quick calculation of the first natural frequency. The location of the belt truss-outrigger that maximizes the first natural frequency of the structure is introduced as an optimum location. The structure is modeled using SAP-2000 finite elements software. In the modelling, the location of the belt truss-outrigger is changed along the height of the structure. With various locations of the outrigger, the lateral deflection of the all stories and axial force in the columns of the outer tube are calculated. The analysis is repeated by locating the outrigger-belt truss at the optimum location. The analysis results are compared and effect of the optimum location on the lateral deflection and the shear lag phenomena are investigated.

Seasonal Gap Theory for ENSO Phase Locking

  • SOONG-KI KIM;SOON-IL AN
    • Journal of Climate Change Research
    • /
    • v.34 no.14
    • /
    • pp.5621-5634
    • /
    • 2021
  • The life cycle of El Niño-Southern Oscillation (ENSO) typically follows a seasonal march, with onset in spring, developing during summer, maturing in boreal winter, and decaying over the following spring. This feature is referred to as ENSO phase locking. Recent studies have noted that seasonal modulation of the ENSO growth rate is essential for this process. This study investigates the fundamental effect of a seasonally varying growth rate on ENSO phase locking using a modified seasonally dependent recharge oscillator model. There are two phase locking regimes associated with the strength of the seasonal modulation of growth rate: 1) a weak regime in which only a single peak occurs and 2) a strong regime in which two types of events occur either with a single peak or with a double peak. Notably, there is a seasonal gap in the strong regime, during which the ENSO peak cannot occur because of large-scale ocean-atmosphere coupled processes. We also retrieve a simple analytical solution of the seasonal variance of ENSO, revealing that the variance is governed by the time integral of seasonally varying growth rate. Based on this formulation, we propose a seasonal energy index (SEI) that explains the seasonal gap and provides an intuitive explanation for ENSO phase locking, potentially applicable to global climate model ENSO diagnostics.

Electromagnetic Traveltime Tomography with Wavefield Transformation (파동장 변환을 이용한 전자탐사 주시 토모그래피)

  • Lee, Tae-Jong;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.17-25
    • /
    • 1999
  • A traveltime tomography has been carried out by transforming electromagnetic data in frequency domain to wave-like domain. The transform uniquely relates a field satisfying a diffusion equation to an integral of the corresponding wavefield. But direct transform of frequency domain magnetic fields to wave-field domain is ill-posed problem because the kernel of the integral transform is highly damped. In this study, instead of solving such an unstable problem, it is assumed that wave-fields in transformed domain can be approximated by sum of ray series. And for further simplicity, reflection and refraction energy compared to that of direct wave is weak enough to be neglected. Then first arrival can be approximated by calculating the traveltime of direct wave only. But these assumptions are valid when the conductivity contrast between background medium and the target anomalous body is low enough. So this approach can only be applied to the models with low conductivity contrast. To verify the algorithm, traveltime calculated by this approach was compared to that of direct transform method and exact traveltime, calculated analytically, for homogeneous whole space. The error in first arrival picked by this study was less than that of direct transformation method, especially when the number of frequency samples is less than 10, or when the data are noisy. Layered earth model with varying conductivity contrasts and inclined dyke model have been successfully imaged by applying nonlinear traveltime tomography in 30 iterations within three CPU minutes on a IBM Pentium Pro 200 MHz.

  • PDF

A Coupled Analysis of Finite Elements and Boundary Elements for Time Dependent Inelastic Problems (시간의존 비탄성 문제의 유한요소-경계요소 조합에 의한 해석)

  • Kim, Moon Kyum;Huh, Taik Nyung;Jang, Jung Bum;Oh, Se Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.25-34
    • /
    • 1993
  • The long-term behavior, such as in excavation problems of weak medium, can be dealt with by the elasto-viscoplasticity models. In this paper, a combined formulation of elasto-viscoplasticity using boundary elements and finite elements without using internal cells is presented. The domain integral introduced due to the viscoplastic stresses is transformed into a boundary integral applying direct integration in cylindrical coordinates. The results of the developed boundary element analysis are compared with those from the explicit solution and from the finite element analysis. It is observed that the boundary element analysis without internal cells results in some error because of its deficiency in handling the nonlinearity in local stress concentration. Therefore, a coupled analysis of boundary elements and finite elements, in which finite elements are used in the area of stress concentration, is developed. The coupled method is applied to a time dependent inelastic problem with semi-infinite boundaries. It results in reasonable solution compared with other methods where relatively higher degree of freedoms are employed. Thus, it is concluded that the combined analysis may be used for such problems in the effective manner.

  • PDF

Development of the Inductive Proximity Sensor Module for Detection of Non-contact Vibration (비접촉 진동 검출을 위한 유도성 근접센서모듈 개발)

  • Nam, Si-Byung;Yun, Gun-Jin;Lim, Su-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.5
    • /
    • pp.61-71
    • /
    • 2011
  • To measure the fatigue of metallic objects at high speed vibration while non-contact precision displacement measurement on how to have a lot of research conducted. Noncontact high-speed vibration detection sensor of the eddy current sensors and laser sensors are used, but it is very expensive. Recently, High-speed vibrations detection using an inexpensive inductive sensor to have been studied, but is still a beginner. In this paper, a new design of an inexpensive inductive proximity sensor has been suggested in order to measure high frequency dynamic displacements of metallic specimens in a noncontact manner. Detection of the existing inductive sensors, detection, integral, and amplified through a process to detect the displacement noise due to weak nature of analog circuits and integral factor in the process of displacement detection is slow. The proposed method could be less affected by noise, the analog receive and high-speed signal processing is a new way, because AD converter (Analog to Digital converter) without using the vibration frequency signals directly into digital signals are converted. In order to evaluate the sensing performance, The proposed sensor module using non-contact vibration signals were detected while shaker vibration frequencies from 30Hz to 1,100 Hz at intervals of vibrating metallic specimens. Experimental results, Vibration frequency detection range of the metallic specimins within close proximity to contactless 5mm could be measured from DC to 1,100Hz and vibration amplitude of the resolution was $20{\mu}m$. Therefore, the proposed non-contact inductive sensor module for precision vibration detection sensor is estimated to have sufficient performance.

AN EXPERIMENTAL STUDY WITH SNUF AND VALIDATION OF THE MARS CODE FOR A DVI LINE BREAK LOCA IN THE APR1400

  • Lee, Keo-Hyoung;Bae, Byoung-Uhn;Kim, Yong-Soo;Yun, Byong-Jo;Chun, Ji-Han;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.691-708
    • /
    • 2009
  • In order to analyze thermal hydraulic phenomena during a DVI (Direct Vessel Injection) line break LOCA (Loss-of-Coolant Accident) in the APR1400 (Advanced Power Reactor 1400 MWe), we performed experimental studies with the SNUF (Seoul National University Facility), a reduced-height and reduce-pressure integral test loop with a scaled down APR1400. We performed experiments dealing with eight test cases under varied tests. As a result of the experiment, the primary system pressure, the coolant temperature, and the occurrence time of the downcomer seal clearing were affected significantly by the thermal power in the core and the SI flow rate. The break area played a dominant role in the vent of the steam. For our analytical investigation, we used the MARS code for simulation of the experiments to validate the calculation capability of the code. The results of the analysis showed good and sufficient agreement with the results of the experiment. However, the analysis revealed a weak capability in predicting the bypass flow of the SI water toward the broken DVI line, and it was insufficient to simulate the streamline contraction in the broken side. We, hence, need to improve the MARS code.

Analysis of Magnetic Fields Induced by Line Currents using Coupling of FEM and Analytical Solution (선전류에 의해 발생되는 자장의 해석을 위한 유한요소법과 해석해의 결합 기법)

  • Kim, Young-Sun;Cho, Dae-Hoon;Lee, Ki-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.3
    • /
    • pp.141-145
    • /
    • 2006
  • The line current problem(2-dimensional space : point source) is not easy to analyze the magnetic field using the standard finite element method(FEM), such as overhead trolley line or transmission line. To supplement such a defect this paper is proposed the coupling scheme of analytical solution and FEM. In analysis of the magnetic field using the standard FEM. If the current region is a relatively small compared to the whole region. Therefore the current region must be finely divided using a large number of elements. And the large number of elements increase the number of unknown variables and the use of computer memories. In this paper, an analytical solution is suggested to supplement this weak points. When source is line current and the part of interest is far from line current, the analytical solution can be coupling with FEM at the boundary. Analytical solution can be described by the multiplication of two functions. One is power function of radius, the other is a trigonometric function of angle in the cylindrical coordinate system. There are integral constants of two types which can be established by fourier series expansion. Also fourier series is represented as the factor to apply the continuity of the magnetic vector potential and magnetic field intensity with tangential component at the boundary. To verify the proposed algorithm, we chose simplified model existing magnetic material in FE region. The results are compared with standard FE solution. And it is good agreed by increasing harmonic order.