• Title/Summary/Keyword: $pCO_2$

Search Result 7,712, Processing Time 0.038 seconds

2D Correlation Analysis of Spin-Coated Films of Biodegradable P(HB-co-HHx)/PEG Blends

  • Kim, Min-Kyung;Ryu, Soo-Ryeon;Noda, Isao;Jung, Young-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.4005-4010
    • /
    • 2011
  • We investigated thermal behavior of spin-coated films of P(HB-co-HHx)/PEG blends by using infraredreflection absorption (IRRAS) spectroscopy and 2D correlation spectroscopy. Based on 2D IRRAS correlation spectra, we could determine the sequence of spectral intensity changes with increasing temperature that PEG band changes first and then a band for crystalline component of P(HB-co-HHx) changes before a band for amorphous component. The intensities of bands for PEG and amorphous P(HB-co-HHx) were changed greatly as PEG weigh % of P(HB-co-HHx)/PEG blends increased. Transition temperatures of P(HB-co-HHx)/PEG blends were successfully determined by 2D gradient mapping method. The transition temperature of spincoated films of 98/2 and 90/10 P(HB-co-HHx)/PEG blends and 80/20 P(HB-co-HHx)/PEG blend determined by 2D gradient map are, respectively, about 137.5 and $132.5^{\circ}C$. Furthermore, P(HB-co-HHx)/PEG blends show an additional transition temperature that have been interpreted in terms of different lamellar thicknesses in spin coated films.

Expression Analyses of MicroRNAs in Hamster Lung Tissues Infected by SARS-CoV-2

  • Kim, Woo Ryung;Park, Eun Gyung;Kang, Kyung-Won;Lee, Sang-Myeong;Kim, Bumseok;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.43 no.11
    • /
    • pp.953-963
    • /
    • 2020
  • Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an infectious disease with multiple severe symptoms, such as fever over 37.5℃, cough, dyspnea, and pneumonia. In our research, microRNAs (miRNAs) binding to the genome sequences of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory-related coronavirus (MERS-CoV), and SARS-CoV-2 were identified by bioinformatic tools. Five miRNAs (hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-16-5p, and hsa-miR-196a-1-3p) were found to commonly bind to SARS-CoV, MERS-CoV, and SARS-CoV-2. We also identified miRNAs that bind to receptor proteins, such as ACE2, ADAM17, and TMPRSS2, which are important for understanding the infection mechanism of SARS-CoV-2. The expression patterns of those miRNAs were examined in hamster lung samples infected by SARS-CoV-2. Five miRNAs (hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-221-3p, hsa-miR-140-3p, and hsa-miR-422a) showed differential expression patterns in lung tissues before and after infection. Especially, hsa-miR-15b-5p and hsa-miR-195-5p showed a large difference in expression, indicating that they may potentially be diagnostic biomarkers for SARS-CoV-2 infection.

Assesment of pCO2 in the Yellow and East China Sea Using an Earth System Model (지구시스템모형을 이용한 황동중국해 이산화탄소분압 분포 특성 평가)

  • Park, Young-Gyu;Choi, Sang-Hwa;Kim, Cheol-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.4
    • /
    • pp.447-455
    • /
    • 2011
  • Using results from an earth system model, the distribution of partial pressure of $CO_2$ ($pCO_2$) in surface seawater over the East China Sea is investigated. In this area $pCO_2$ shows minimum along the edge of the continental break along the path of the Taiwan-Tsushima Current System. Apparently modelled chlorophyll is also great along the current but the maximum of the chlorophyll and the minimum of $pCO_2$ do not coincide suggesting that the primary production is not the main cause of the $pCO_2$ minimum. As we move toward the Yellow Sea from the Kuroshio area the temperature decreases so that the $pCO_2$ becomes smaller. If we move further toward the Yellow Sea beyond the Taiwan-Tsushima Current System, alkalinity starts to drop substantially to intensify $pCO_2$ while overcoming the effect of decreasing temperature and salinity. Thus $pCO_2$ minimum occurs along the Taiwan-Tsushima Current System. Of course, the primary production lower $pCO_2$ during spring when it is high but the effect is local. Near the Yangtze river mouth and northeastern corner of the Yellow Sea the fresh water input is large enough and dissolved inorganic carbon (DIC) becomes low enough so that $pCO_2$ becomes lower again.

Characterizing CO2 Supersaturation and Net Atmospheric Flux in the Middle and Lower Nakdong River (낙동강 중하류에서 이산화탄소 과포화 및 순배출 특성 분석)

  • Lee, Eun Ju;Chung, Se Woong;Park, Hyung Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.416-416
    • /
    • 2019
  • 육상 담수는 대기중 이산화탄소($CO_2$) 배출의 중요한 발생원으로 주목되고 있다. 하천 및 강에서 대기중으로 배출되는 $CO_2$는 전 세계 탄소순환의 핵심요소이며, 대부분의 하천과 강은 $CO_2$로 과포화 되어있다. 세계적으로 하천 및 강의 $CO_2$ 배출량은 호수 및 저수지의 배출량보다 약 5배 많은 것으로 보고되고 있으나, 국내연구에서는 연구사례가 드물다. 따라서 본 연구의 목적은 낙동강 중하류에 위치해있는 강정고령보(GGW), 달성보(DSW), 합천창녕보(HCW), 창녕함안보(CHW)에서 발생되는 순 대기 배출 플럭스(Net Atmospheric Flux, NAF)의 동적 변동 특성을 분석하고, 데이터마이닝 기법을 적용하여 쉽게 수집할 수 있는 물리적 및 수질 변수로 $CO_2$ NAF를 추정하는데 사용할 수 있는 간략한 예측 모델을 개발하는데 있다. $CO_2$ NAF는 대기-수면 경계면에서의 $CO_2$ 부분압($pCO_2$)의 차에 기체전달속도를 곱하여 산정하였으며, 기체전달속도는 Cole and Caraco(1998)가 제안한 식을 사용하였다. 담수와 해수의 탄산염 시스템에서 열역학적 화학평형을 모두 고려한 $CO_2$SYS 프로그램을 사용하여 수중의 $pCO_2$를 산정하였고, $CO_2$ NAF는 Henry의 법칙과 Fick의 1차 확산법칙을 사용하여 계산하였다. $CO_2$ NAF의 시간적 변동성에 영향을 미치는 환경요인을 평가하기 위해서 상관분석, 주성분분석(Principal Component Analysis; PCA), 단계적다중회귀모델(Step-wise Multiple Linear Regression; SMLR), 랜덤포레스트(Random Forest; RF)방법을 사용하였다. SMLR 모델은 R package인 olsrr, RF 모델은 R package인 caret, randomForest를 이용하여 분석하였다. 연구 결과, 4개 보 상류 하천구간은 조류의 성장이 활발한 일부 기간을 제외한 대부분의 기간에서 $CO_2$를 대기로 배출하는 종속영양시스템(Heterotrophic system)을 보였다. $CO_2$ NAF의 중위값은 HCW에서 최소 $391.5mg-CO_2/m^2day$, DSW에서 최대 $1472.7mg-CO_2/m^2day$였다. 모든 보에서 NAF는 pH와 강한 음의 상관관계를 보였으며, $pCO_2$와 Chl-a도 음의 상관관계를 보였다. 이는 조류가 수중에서 $CO_2$를 소비하고 pH를 증가시키기 때문이다. PCA 분석 결과, NAF와 $pCO_2$가 높은 공분산을 보였으며, pH와 Chl-a는 반대 방향으로 군집되어 상관분석과 동일한 결과를 보였다. 이 연구를 통해 개발된 SMLR 모델과 RF 모델의 Adj. $R^2$ 값은 모든 보에서 0.77 이상으로 나왔으며, $pCO_2$ 측정 데이터가 없더라도 하천의 $CO_2$ NAF를 추정하는 방법으로 사용될 수 있을 것으로 평가된다.

  • PDF

The pH Reduction of the Recycled Aggregate Originated from the Waste Concrete by the scCO2 Treatment (초임계 이산화탄소를 이용한 폐콘크리트 순환골재의 중성화)

  • Chung, Chul-woo;Lee, Minhee;Kim, Seon-ok;Kim, Jihyun
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.257-266
    • /
    • 2017
  • Batch experiments were performed to develop the method for the pH reduction of recycled aggregate by using $scCO_2$ (supercritical $CO_2$), maintaining the pH of extraction water below 9.8. Three different aggregate types from a domestic company were used for the $scCO_2$-water-recycled aggregate reaction to investigate the low pH maintenance of aggregate during the reaction. Thirty five gram of recycled aggregate sample was mixed with 70 mL of distilled water in a Teflon beaker, which was fixed in a high pressurized stainless steel cell (150 mL of capacity). The inside of the cell was pressurized to 100 bar and each cell was located in an oven at $50^{\circ}C$ for 50 days and the pH and ion concentrations of water in the cell were measured at a different reaction time interval. The XRD and SEM-EDS analyses for the aggregate before and after the reaction were performed to identify the mineralogical change during the reaction. The extraction experiment for the aggregate was also conducted to investigate the pH change of extracted water by the $scCO_2$ treatment. The pH of the recycled aggregate without the $scCO_2$ treatment maintained over 12, but its pH dramatically decreased to below 7 after 1 hour reaction and maintained below 8 for 50 day reaction. Concentration of $Ca^{2+}$, $Si^{4+}$, $Mg^{2+}$ and $Na^+$ increased in water due to the $scCO_2$-water-recycled aggregate reaction and lots of secondary precipitates such as calcite, amorphous silicate, and hydroxide minerals were found by XRD and SEM-EDS analyses. The pH of extracted water from the recycled aggregates without the $scCO_2$ treatment maintained over 12, but the pH of extracted water with the $scCO_2$ treatment kept below 9 of pH for both of 50 day and 1 day treatment, suggesting that the recycled aggregate with the $scCO_2$ treatment can be reused in real construction sites.

Effects of pH, $PCO_2$, and Adenosine on the Contractility of Pig Coronary Artery

  • Chang, Seok-Jong;Kim, Il-Seon;Jeon, Byeong-Hwa;Kim, Se-Hoon
    • The Korean Journal of Physiology
    • /
    • v.26 no.1
    • /
    • pp.45-54
    • /
    • 1992
  • Effects of pH, $PCO_2$, and adenosine on the vascular contractility were investigated in the pig coronary arteries. The helical strips of isolated coronary arteries were immersed in the HEPES or $HCO_3^-/CO_2$-buffered Tyrode's solution equilibrated with 100% $O_2\;or\;95%\;O_2-5%\;CO_2\;at\;35^{\circ}C$. The contraction was recorded isometrically using a force transducer. The amplitudes of contraction induced by ACh, high $K^+$, and electrical Held stimulation (EFS) were decreased by elevating extracellular pH (pHo) and were increased by lowering pHo. A shift from $0%\;CO_2\;to\;5%\;CO_2$ at constant pHo (pH 7.4) reduced the contractions induced by ACh, high $K^+$, EFS. However the contraction induced by 100mM $K^+$ was less influenced by the change of pHo or $CO_2$. The contraction induced by ACh in $Ca^{2+}$free Tyrode's solution as well as the contraction developed by the addition of extracellular of $Ca^{2+}$ were decreased by lowering pHo and were increased by elevating pHo. High $K^+$ (25mM) induced contraction at pH 6.8 was not returned to the level of the contraction at pH 7.4 by the elevation of extracellular. calcium $[Ca^{2+}]_o$. Adenosine-induced relaxation was more significant with 5% $CO_2$ than 0% $CO_2$ in the high $K^+$-induced contraction and was more significant with low pHo than high pHo in the contraction induced by EFS. From the above results, it is suggested that $H^+$ and $CO_2$ inhibit $Ca^{2+}$ influx as well as $Ca^{2+}$ release from intracellular $Ca^{2+}$ storage sites and enhance the relaxing effect of adenosine in the pig coronary artery.

  • PDF

Enhanced Electrochemical CO2 Reduction on Porous Au Electrodes with g-C3N4 Integration (g-C3N4 도입에 따른 다공성 Au 전극의 전기화학적 이산화탄소 환원 특성)

  • Jiwon Heo;Chaewon Seong;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.78-84
    • /
    • 2024
  • The electrochemical reduction of carbon dioxide (CO2) is gaining attention as an effective method for converting CO2 into high-value carbon compounds. This paper reports a facile meth od for synth esizing and characterizing g-C3N4-modified porous Au (pAu) electrodes for electrochemical CO2 reduction using e-beam deposition and anodization techniques. The fabricated pAu@g-C3N4 electrode (@ -0.9 VRHE) demonstrated superior electrochemical performance compared to the pAu electrode. Both electrodes exhibited a Faradaic efficiency (FE) of 100% for CO production. The pAu@g-C3N4 electrode achieved a maximum CO production rate of 9.94 mg/s, which is up to 2.2 times higher than that of the pAu electrode. This study provides an economical and sustainable approach to addressing climate change caused by CO2 emissions and significantly contributes to the development of electrodes for electrochemical CO2 reduction.

Chlorination Kinetics of Synthetic Rutile with Cl2+CO Gas (Cl2+CO 혼합가스에 의한 합성루타일 염화반응의 속도론적 연구)

  • Hong, Sung-Min;Lee, So-Yeong;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.29 no.3
    • /
    • pp.3-10
    • /
    • 2020
  • The chlorination kinetics of synthetic rutile prepared by selective chlorination of ilmenite with Cl2 and CO gas mixture were studied in a fluidized bed. Th e effects of reaction temperature, reaction time, and the ratio of Cl2 and CO partial pressure ($p_{Cl_2}/p_{CO}$) on the conversion rate of TiCl4 were investigated. The conversion rate of TiC4 was low under the high $p_{Cl_2}/p_{CO}$ conditions. Moreover, it was considered that the partial pressure of CO gas was more effective than that of Cl2 gas when comparing the stoichiometric conversion rate and experimental results of high CO partial pressure. Considering the porous structure of particles, the rate controlling step of the chlorination of synthetic rutile was determined to be chemical reaction and the activation energy was calculated as 53.77 kJ/mol.

Reduction of pH of Recycled Fine Aggregate due to Natural and Artificial Treatment Method (자연 및 인위적 처리방법 변화에 따른 순환잔골재의 pH저감)

  • Han, Cheon-Goo;Han, Min-Cheol;Han, Sang-Yoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.103-110
    • /
    • 2011
  • This study is to comparatively analyze the characteristics of pH decrease in recycled fine aggregates for embankment and landfill produced from waste concrete by using natural process and artificial process. The result was as follows In case of recycled fine aggregates left outdoor, it was found that pH level was decreased if the thickness of embankment becomes thinner, or the materials left outdoors owing to high concentration of $CO_2$ in atmosphere caused by respirations of people. When the air was permeated, pH level was decreased more effectively. It was analyzed that this phenomenon was caused by efficient supply of $CO_2$ in the recycled fine aggregates owing to high-pressure ventilators. In case of water spraying treatment, sprayed water facilitated hydration of unhydrated cement to dissolve calcium hydroxides which neutralized $CO_2$ in the atmosphere during desiccation process and decrease pH level by a considerable margin. In case of Immersed treatment, decrease of pH was not sufficient. When facilitating the supply of $CO_2$, pH level of the recycled fine aggregates was decreased by the largest margin. It was analyzed that this phenomenon was caused by efficient supply of $CO_2$. From the above results, it was analyzed that the most effective method of reducing pH level of the recycled fine aggregates from the aspects of pH reduction performance, economic efficiency and workability was repeated wet-dry cycles of spraying water to the aggregates in the proportion of 1:0.5 by weight and then treating by forcefully blowing $CO_2$ gas into the aggregates.

  • PDF

Knowledge Integration and CoP Performance: Based on Social Capital and Diversity in CoP (CoP 내 지식통합과 CoP 성과 연구: 사회적 자본과 CoP 구성 다양성을 기반으로)

  • Lee, Gunho;Min, Jinyoung;Heo, Dongcheol;Lee, Junyeong;Lee, Heeseok
    • Knowledge Management Research
    • /
    • v.15 no.2
    • /
    • pp.129-145
    • /
    • 2014
  • As a community of practice (CoP) is known to facilitate team learning, it is increasingly important to understand the mechanisms of CoP, thereby enabling organizations to fully utilize it and optimize its benefits. To explain how CoP improves organizational performance, we focus on its effects on social capital and knowledge management activities, and propose a research model suggesting that shared goals and trust in CoP improve its performance through knowledge integration. Our analysis uses structural equation modeling, with field data collected from 372 members of 46 CoPs in three companies; the analysis validates our research model. Our findings also suggest that CoP diversity can strengthen the link between knowledge integration and CoP performance.

  • PDF