• Title/Summary/Keyword: $k-varepsilon$ turbulence model

Search Result 467, Processing Time 0.022 seconds

Prediction of Airflow and Temperature Field in a Room With Convective Heat Source (열원이 존재하는 작업장내 기류 및 온도장 예측)

  • Jung, Yu-Jin;Ha, Hyun-Chul;Kim, Tae-Hyeung;Yoo, Guen-Jong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.78-84
    • /
    • 2001
  • A CFD simulation of airflow and temperature field in a heated room has been described in this paper. The thermal wall jet created by a radiator greatly influences the airflow pattern, temperature distribution. The area close La a heat source has a higher risk of air-borne contamination and imposes a harmful effect on occupants in that area. The predicted flow field, temperature results show good agreement with the measured data. As the results were compared with experimental data, the applicability of CFD was satisfactorily verified. Also, the CFD simulation can capture the natural convective flow features. If a CFD simulation is applied ventilation design with a heat source, An effective design will be attained. Further study is required to improve the accuracy of CFD simulation.

  • PDF

THREE-DIMENSIONAL FLOW COMPUTATION AND PERFORMANCE CHARACTERISTICS ANALYSIS OF PROPELLERS FOR WATER TREATMENT MIXER (수처리 교반기용 프로펠러의 3차원 유동 전산 해석 및 성능 특성 분석)

  • Bae, Y.G.;Kim, D.H.;Hwang, S.T.;Moon, Y.J.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.10-15
    • /
    • 2015
  • In this study, the characteristics of water treatment mixer with various propeller profiles are numerically invesitgated. The computation was conducted by solving the incompressible Navier-Stokes equations on unstructured tetrahedral elements with k-${\varepsilon}$ turbulence model. It was found that the spreading angle and swirl magnitude of the jet are important factors for the mixer efficiency, since they clearly characterize the propeller and the frontal surface area of the propeller but not so much affected by the skew angle if it exceeds 30 degrees. The case1 and case2 models are found to show the best propeller efficiency. The case2 with low blade angle, however, requires the lowest power input for the same discharge capacity as the case1.

Thermal and flow characteristics of confined multiple slot jet impingement with exhaust ports (배기구를 가진 국한된 다중 슬롯 충돌제트의 열유동 특성)

  • Kang, Soo-Jin;Cho, Woo-Jin;Lee, Jong-Hyeok;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.835-840
    • /
    • 2009
  • In this paper, confined multiple slot jet impingement with exhaust ports is investigated numerically. A flow cell, defined as volume sectioned by the impingement and confinement surfaces and the centerlines of adjacent nozzle and exhaust port, is chosen for computational domain. The effects of Reynolds number and geometrical parameters on the heat transfer performance and the flow characteristics are studied. For turbulence, the Abe-Kondoh-Nagano version of the low-Reynolds k-$\varepsilon$ model is employed. The results showed that the local Nusselt number distribution is shifted down and show poor heat transfer performance for small Reynolds number and small ratio of the lateral and axial length of flow cell. The rest of range, except the range of the shift phenomenon, can be classified into three groups by heat transfer characteristics.

  • PDF

Numerical Analysis on Velocity Fields around Seabed Tiller for the Improvement of Seabed Soil (해저 토질 개선을 위한 해저경운기 주변의 속도장에 대한 수치해석)

  • Kim, Jang-Kweon;Oh, Seok-Hyung;Kim, Jong-Beom;Chung, Sang-Ok
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.48-56
    • /
    • 2017
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to evaluate the velocity fields around the seabed tiller used for the improvement of the seabed soil and the pulling force and buoyancy generated by driving the seabed tiller. The turbulence model used in this study is a realizable $k-{\varepsilon}$ well known to be excellent for predicting the performance of the flow separation and recirculation flow as well as the boundary layer with rotation and strong back pressure gradient. As a results, a typical vortex pair appears near the adjacent rotor vane tip. When the current is stopped, there is no force when pulling the seabed tiller, but when the current flows at 1.2 knots, the force acts on the downstream side and the pulling force is much greater. In stationary currents, the buoyancy of the seabed tiller acts more strongly towards the seabed as the number of rotations of the rotor increases, but acts more strongly toward the sea surface at 1.2 knots of current.

Numerical Analysis on Heat Transfer Characteristics and Pressure Drop in Plate Heat Exchanger (판형열교환기의 열전달특성 및 압력강하에 관한 해석적 연구)

  • Kim, K.R.;Kim, I.G.;Yim, C.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.19-26
    • /
    • 2002
  • This study aims at numerically analyzing on heat transfer the characteristics and pressure drop of plate heat exchanger(PHE) using the Phoenics 3.1 VR Editor for the standard k-$\varepsilon$ model. Computations have been carried out for a range of chevron angle from $30^{\circ}$ to $60^{\circ}$, inlet velocity from 0.03m/s to 0.63m/s and the height of corrugation from 0.0045m to 0.0060m. The results show that both of heat transfer performance and pressure drop increase as chevron angle increases. This is because higher troughs produce higher turbulence and a higher heat transfer coefficient in the liquids flowing between the plates. As inlet velocity from 0.03m/s to 0.63m/s increases, heat transfer performance and pressure drop increase parabolically. As the height of corrugation increases, both of heat transfer performance and pressure drop decrease with the decrease of velocity. And the pressure drop decreases and the friction factor increases as the height of corrugation increases.

Three-Dimensional Computational Flow Analysis on Meteorological-Tower Shading Effect (풍황탑 차폐영향 분석을 위한 3차원 전산유동해석)

  • Rhee, Hui-Nam;Kim, Tae-Sung;Jeon, Wan-Ho;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • It is difficult to avoid measurement errors caused by the shading effect of the meteorological tower, which is used for wind resource assessment according to the IEC Standard. This paper presents a validation of the computational flow analysis results by comparing the results with the wind tunnel experiment conducted for Reynolds numbers in the $10^4$ to $10^5$ range, for the preparation of a database for use in an automatic method of correcting met-tower shading errors. A three-dimensional simulation employing the MP (Modified Production) $k-{\varepsilon}$ turbulence model predicted a wind speed deficit in the wake region according to minimum wind speed ratio, within an MAE (Mean Absolute Error) of 2.4%.

Investigation on the Flow Field Upstream of a Centrifugal Pump Impeller

  • Zhang, Yao;Luo, Xianwu;Yi, Yunchi;Zhuang, Baotang;Xu, Hongyuan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.209-216
    • /
    • 2011
  • The flow upstream of a centrifugal pump impeller has been investigated by both experimental test and numerical simulation. For experimental study, the flow field at four sections in the pump suction is measured by using PIV method. For calculation, the three dimensional turbulent flow for the full flow passage of the pump is simulated based on RANS equations combined with RNG k-$\varepsilon$ turbulence model. From those results, it is noted that at both design lo ad and quarter load condition, the pre-swirl flow whose direction is the same as the impeller rotation exists at all four sections in suction pipe of the pump, and at each section, the pre-swirl velocity becomes obviously larger at higher rotational speed. It is also indicated that at quarter load condition, the low pressure region at suction surface of the vane is large because of the unfavorable flow upstream of the pump impeller.

Unsteady Analysis of Impeller-Volute Interaction in Centrifugal Pump

  • Cheah, Kean Wee;Lee, Thong See;Winoto, Sonny H.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.349-359
    • /
    • 2011
  • An unsteady numerical analysis has been carried out to study the strong impeller volute interaction of a centrifugal pump with six backward swept blades shrouded impeller. The numerical analysis is done by solving the three-dimensional Reynolds Averaged Navier-Stokes codes with standard k-${\varepsilon}$ two-equations turbulence model and wall regions are modeled with a scalable log-law wall function. The flow within the impeller passage is very smooth and following the curvature of the blade in stream-wise direction. However, the analysis shows that there is a recirculation zone near the leading edge even at design point. When the flow is discharged into volute casing circumferentially from the impeller outlet, the high velocity flow is severely distorted and formed a spiraling vortex flow within the volute casing. A spatial and temporal wake flow core development is captured dynamically and shows how the wake core diffuses. Near volute tongue region, the impeller/volute tongue strong interaction is observed based on the periodically fluctuating pressure at outlet. The results of existing analysis also proved that the pressure fluctuation periodically is due to the position of impeller blade relative to tongue.

Computational Study of the Axisymmetric, Supersonic Ejector-Diffuser Systems

  • Kim, Heuy-Dong;Lee, Young-Ki;Seo, Tae-Won;Raghunathan, Srinivasan
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.520-524
    • /
    • 2000
  • A ejector system is one of the fluid machinery, which has been mainly used as an exhaust pump or a vacuum pump. The ejector system has often been pointed out to have only a limited efficiency because it is driven by pure shear action and the mixing action between primary and secondary streams. In the present work, numerical simulations were conducted to investigate the effects of the geometry and the mass flow ratio of supersonic ejector-diffuser systems on their mixing performance. A fully implicit finite volume scheme was applied to solve the axisymmetric Navier-Stokes equations, and the standard ${\kappa}-{\varepsilon}$ turbulence model was used to close the governing equations. The flow fields of the supersonic ejector-diffuser systems were investigated by changing the ejector throat area ratio and the mass flow ratio. The existence of the second throat strongly affected the shock wave structure inside the mixing tube as well as the spreading of the under-expanded jet discharging from the primary nozzle, and served to enhance the mixing performance.

  • PDF

Unsteady Simulations of the Flow in a Swirl Generator, Using OpenFOAM

  • Petit, Olivier;Bosioc, Alin I.;Nilsson, Hakan;Muntean, Sebastian;Susan-Resiga, Romeo F.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.199-208
    • /
    • 2011
  • This work presents numerical results, using OpenFOAM, of the flow in the swirl flow generator test rig developed at Politehnica University of Timisoara, Romania. The work shows results computed by solving the unsteady Reynolds Averaged Navier Stokes equations. The unsteady method couples the rotating and stationary parts using a sliding grid interface based on a GGI formulation. Turbulence is modeled using the standard k-${\varepsilon}$ model, and block structured wall function ICEM-Hexa meshes are used. The numerical results are validated against experimental LDV results, and against design velocity profiles. The investigation shows that OpenFOAM gives results that are comparable to the experimental and design profiles. The unsteady pressure fluctuations at four different positions in the draft tube is recorded. A Fourier analysis of the numerical results is compared whit that of the experimental values. The amplitude and frequency predicted by the numerical simulation are comparable to those given by the experimental results, though slightly over estimated.