• Title/Summary/Keyword: $k-varepsilon$ turbulence model

Search Result 467, Processing Time 0.026 seconds

Calculation of Turbulent Flows Using an Implicit Scheme on Two-Dimensional Unstructured Meshes (2차원 비정렬 격자에서의 내재적 기법을 이용한 난류 유동 계산)

  • Kang Hee Jung;Kwon Oh Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.29-37
    • /
    • 1997
  • An implicit viscous turbulent flow solver is developed for two-dimensional geometries on unstructured triangular meshes. The flux terms are discretized based on a cell-centered finite-volume formulation with the Roe's flux-difference splitting. The solution is advanced in time using an implicit backward-Euler time-stepping scheme. At each time step, the linear system of equations is approximately solved with the Gauss-Seidel relaxation scheme. The effect of turbulence effects is approximated with a standard $k-{\varepsilon}$ two-equation model which is solved separately from the mean flow equations using the same backward-Euler time integration scheme. The triangular meshes are generated using an advancing-front/layer technique. Validations are made for flows over the NACA0012 airfoil and the Douglas 3-element airfoil. Good agreements are obtained between the numerical results and the experiment.

  • PDF

Shape Optimization of Heat Transfer Surfaces with Staggered Ribs To Enhance Thrbulent Heat Transfer (난류열전달 향상을 위한 엇갈린 리브가 부착된 열전달면의 형상최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1351-1359
    • /
    • 2003
  • This study presents a numerical procedure to optimize shape of streamwise periodic ribs mounted on both of the principal walls to enhance turbulent heat transfer in a rectangular channel flow. The response surface method is used as an optimization technique. The optimization is based on Navier-Stokes analysis of flow and heat transfer with $k-{\varepsilon}$ turbulence model. The width-to-height ratio of a rib, rib height-to-channel height ratio and rib pitch to rib height ratio are chosen as design variables. The object function is defined as a function of heat transfer coefficient and friction drag coefficient with weighting factor. Optimum shapes of the rib have been obtained for the range of 0.02 to 0.1 of weighting factor.

Numerical Optimization of Heat Transfer Surfaces with Staggered Ribs (엇갈린 리브가 부착된 열전달면의 수치최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.735-740
    • /
    • 2003
  • In this study, a numerical optimization to find the optimal shape of streamwise periodic ribs mounted on both of the principal walls is performed to enhance turbulent heat transfer in a rectangular channel. The optimization is based on Navier-Stokes analysis of flow and heat transfer with $k-{\varepsilon}$ turbulence model and is implemented using response surface method. The width-to-height ratio of a rib, rib height-to-channel height ratio, rib pitch to rib height ratio and distance between opposite ribs to rib height ratio are chosen as design variables. The object function is defined as a function of heat transfer coefficient and friction drag coefficient with weighting factor. Optimum shapes of the rib have been investigated for the range of 0.0 to 0.1 of weighting factor.

  • PDF

Study on CFD Analysis of Dying Plant with Rotary Kiln Type for Eco-Industrial Park (로타리 킬른형 건조로 열유동 해석에 관한 연구)

  • Kang, Woo-Jung;Hwang, Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.61-68
    • /
    • 2009
  • This paper presents the numerical analysis of process of sludge drying to know the characteristics of design parameters and develop the new process plant. Finite volume method and $k-{\varepsilon}$ turbulence model were used to analogy the sludge drying furnace. It has been attempted to perform the disposal of sewage sludge such as simple reclaiming and dumping in sea and incineration. Currently, these methods are restricted by national or international government regulations. The drying process is adopted as an effective method for sewage sludge treatment. However sewage sludge makes it difficult to treat with a large volume at the real drying process plant because of its own complicated physical, chemical, and thermal properties. The final design value of moisture content with 10% of the dried sludge can be obtained through the simulated outputs in this study.

  • PDF

Effect of supply air temperature and airflow rate on ventilation effectiveness in an underfloor air conditioning space (바닥취출 공조공간에서 급기온도 및 급기풍속이 환기효율에 미치는 영향)

  • 정광섭;한화택;홍승재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.640-648
    • /
    • 1998
  • A numerical study has been conducted to investigate the effect of inflow supply air temperature and velocity on ventilation effectiveness in an underfloor air conditioning space. A low Reynolds number k-$\varepsilon$ model is implemented to calculate steady state turbulent velocity distributions. A step-down injection method is used to calculate local and room mean ages from transient concentrations based on the concept of the age of air. Results show that there is a significant effect of Archimedes number on ventilation effectiveness especially for cooling conditions. Reynolds number shows relatively minor effect on velocity distribution and ventilation effectiveness especially for isothermal and heating conditions. It can be concluded that underfloor air conditioning system provides good ventilation characteristics for cooling conditions because of temperature stratification in the space.

  • PDF

Numerical Analysis of Moisture Ventilation in the Dry Room (Dry room내 수분환기에 대한 수치적 연구)

  • 이관수;임광옥;정영식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.908-916
    • /
    • 2000
  • In this paper, the characteristics of moisture ventilation in the lithium ion battery manufacturing dry room are studied numerically using standard $k-\varepsilon$ turbulence model. Both the steady-state and the unsteady behaviors of moisture ventilation are analyzed by considering local and uniform moisture generation. In order to evaluate the characteristics of moisture ventilation, three scales of ventilation efficiency and characteristic ventilation time are presented from the numerical results. It was shown that moisture distribution was dependent strongly on the flow field. The characteristics of moisture ventilation were improved by 20% and 40% in terms of the 1st scale of ventilation efficiency (SVE1) and the 2nd scale of ventilation efficiency (SVE2), respectively, through the modifications of design variables such as the addition of inlets, outlets and partition. A significant improvement in the characteristic ventilation time and the moisture exhaust efficiency was also made by these modifications.

  • PDF

Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan (전향 원심 송풍기의 3차원 유동에 대한 수치해석)

  • Yoon, Joon-Yong;Maeng, Joo-Sung;Byun, Sung-Joon;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.916-923
    • /
    • 2000
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates arc used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady and incompressible. These numerical results are compared with the experimental data inside a rotor and at the fan outlet. Most important flow features are captured through this numerical approach. Finally details of flow field inside a fan are described and analyzed.

Aerodynamic Performance of Gurney Flap (Gurney 플?의 공기역학적 성능)

  • Yoo, Neung-Soo;Jung, Sung-Woong
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.335-341
    • /
    • 1998
  • A numerical investigation was performed to determine the effect of a Gurney flap on a NACA 23012 airfoil. A Navier-Stokes code, RAMPANT, was used to calculate the flow field about airfoil. The fully turbulent results were obtained using the standard $k-{\varepsilon}$ two-equation turbulence model. To provide a check case for our computational method, computations were performed for NACA 4412 airfoil which compared with Wedcock's experimental data. Gurney flap sizes of 0.5, 1.0, 1.5, and 2% of the airfoil chord were studied. The numerical solutions showed the Gurney flap increased both lift and drag. These results suggested that the Gurney flap served to increased the effective camber of the airfoil. But Gurney flap provided a significant increase in lift-to-drag ratio relatively at low angle of attack and for high lift coefficient. Also, it turned out that 0.5% chord size of flap was best one among them.

  • PDF

Numerical study of a turbulent plane jet under the pressure gradient in the transverse direction (진행축에 수직방향 압력구배를 받는 난류 평면제트의 수치적 연구)

  • 최문창;최도형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1150-1157
    • /
    • 1988
  • Two-dimensional turbulent plane jet which is under the pressure gradient in the transverse direction is studied numerically. Full Navier-Stokes equations are used to correctly account for the pressure variation in the transverse direction. Using the standard k-.epsilon. turbulence model as a closure relationship, a time marching procedure gives the velocity field. The temperature fields are obtained for two different cases : (1) Hot jet is issued into the cold still air, and (2) Hot jet is issued into the surrounding across which exists a temperature difference. The velocity and temperature fields along with other flow and heat-transfer characteristics for two different pressure gradients are presented. A simple formula that relates the jet trajectory to the pressure gradient is also proposed. The mass flux in the longitudinal direction and the jet halfwidth seem insensitive to the pressure gradient. However, the pressure gradient increases the heat flux in the longitudinal direction as well as in the transverse direction.

Effect of Flow Distribution on the Combustion Efficiency In an Entrained-Bed Coal Reactor (분류층 석탄반응로에서 유동분포가 연소성능에 미치는 영향)

  • CHO, Han Chang;SHIN, Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1022-1030
    • /
    • 1999
  • A numerical study was carried out to analyze the effect of flow distribution of stirred part and plug flow part on combustion efficiency at the coal gasification process in an entrained bed coal reactor. The model of computation was based on gas phase eulerian balance equations of mass and momentum. The solid phase was described by lagrangian equations of motion. The $k-{\varepsilon}$ model was used to calculate the turbulence flow and eddy dissipation model was used to describe the gas phase reaction rate. The radiation was solved using a Monte-Carlo method. One-step parallel two reaction model was employed for the devolatilization process of a high volatile bituminous Kideco coal. The computations agreed well with the experiments, but the flame front was closer to the burner than the measured one. The flow distribution of a stirred part and a plug flow part in a reactor was a function of the magnitude of recirculation zone resulted from the swirl. The combustion efficiency was enhanced with decreasing stirred part and the maximum value was found around S=1.2, having the minimum stirred part. The combustion efficiency resulted from not only the flow distribution but also the particle residence time through the hot reaction zone of the stirred part, in particular for the weak swirl without IRZ(internal recirculation zone) and the long lifted flame.