• Title/Summary/Keyword: $k-{\epsilon}$ model

Search Result 260, Processing Time 0.032 seconds

평면 쿠에트 유동의 난류모델에 관한 연구

  • 김광용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.4
    • /
    • pp.990-999
    • /
    • 1990
  • 본 연구에서는 레이놀즈 응력모델을 비롯해 Hassid와 Poreh의 1-바정식 모델 과 K-.epsilon.모델을 사용해 난류 쿠에트 유동을 해석하였다. 특히, 레이놀즈 응력모델의 경우에는 단순구배 확산모델(simple gradient diffusion model)과 Hanjalic과 Launder 의 확산모델 및 Dekeyser와 Launder의 확산모델등 세종류의 확산모델을 사용해 계산결 과를 비교하였다.

A study on an oblique impinging jet (경사충돌분류에 관한 연구)

  • 조용철;김광용;박상규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.716-724
    • /
    • 1990
  • Oblique impinging plane jets were investigated experimentally and numerically at Reynolds number 21000. The inclination angle was varied from 90.deg.(normal to the impinging plate) to 60.deg.. The distance H between the nozzle exit and the stagnation point on the impinging plate was fixed at H/D=8. The working fluid was air. The mean velocity components and turbulent quantities were measured by a hot-wire anemometer. And the static pressure distributions on the impinging plate were measured by a Pitot tube. In numerical computation, the governing partial differential equations of elliptic type were solved with conventional k-.epsilon. turbulence model. The measurements show that, after impingement, the jet half width alone the wall increases in both directions, and that similarity for each turbulent quantity such as Reynolds shear stress or turbulent kinetic energy is revealed in the wall jet region. The computed results show some deviation from experimental data in the impingement region, where streamline curvature is significant. However, the computed results agree qualitatively well with measurements.

A Nonlinear Low-Reynolds-Number k -$\varepsilon$ Model for Turbulent Separated and Reattaching Flows (난류박리 및 재부착 유동의 해석을 위한 비선형 저레이놀즈수 k -$\varepsilon$ 난류모형의 개발)

  • 박태선;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.2051-2063
    • /
    • 1995
  • An improved version of nonlinear low-Reynolds-number k-.epsilon. model is developed. In this model, the limiting near-wall behavior and nonlinear Reynolds stress representations are incorporated. Emphasis is placed on the adoption of Ry(.iden. $k^{1}$2/y/.nu.) instead of $y^{[-10]}$ (.iden. $u_{{\tau}/y/{\nu}}$) in the low-Reynolds-number model for predicting turbulent separated and reattaching flows. The non-equilibrium effect is examined to describe recirculating flows away from the wall. The present model is validated by doing the benchmark problem of turbulent flow behind a backward-facing step. The predictions of the present model are cross-checked with the existing measurements and DNS data. The model performance is shown to be generally satisfactory.

A numerical study of flow and heat transfer characteristics varied by impingement jet in turbine blade cooling (터빈블레이드의 냉각에서 충돌제트에 의해 변화되는 유동 및 열전달 특성에 관한 수치해석적 연구)

  • Lee, Jeong-Hui;Kim, Sin-Il;Yu, Hong-Seon;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4013-4026
    • /
    • 1996
  • A numerical simulation has been carried out for the jet impinging on a flat plate and a semi-circular concave surface. In this computation finite volume method was employed to solve the full Navier-Stokes equation based on a non-orthogonal coordinate with non staggered variable arrangement. The standard k-.epsilon. turbulent model and low Reynolds number k-.epsilon. model(Launder-Sharmar model) with Yap's correction were adapted. The accuracy of the numerical calculations were compared with various experimental data reported in the literature and showed good predictions of centerline velocity decay, wall pressure distribution and skin friction. For the jet impingement on a semi-circular concave surface, potential core length was calculated for two different nozzle(round edged nozzle and rectangular edged nozzle) to consider effects of the nozzle shape. The result showed that round edged nozzle had longer potential core length than rectangular edged nozzle for the same condition. Heat transfer rate along the concave surface with constant heat flux was calculated for various nozzle exit to surface distance(H/B) in the condition of same jet velocity. The maximum local Nusselt number at the stagnation point occurred at H/B = 8 where the centerline turbulent intensity had maximum value. The predicted Nusselt number showed good agreement with the experimental data at the stagnation point. However heat transfer predictions along the downstream were underestimated. This results suggest that the improved turbulence modeling is required.

A Study on the Development of 3rd Stage IGG Blower for Shipbuilding Using CFD (CFD를 이용한 선박용 IGG Blower 개발에 관한 연구)

  • Lee, Jong-Jing;Yi, Chung-Seub;Jeong, Soon-Jae;Jang, Sung-Cheol;Kim, Chi-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1309-1314
    • /
    • 2008
  • I.G.G is abbreviation for Inert Gas Generator, High temperature in Cargo Tank it desulfurize, exhausted and froze the gas that combined brimstone element and soot, then supply Inert gas by blower, and mack tank inside incombustible range this is equipment that nip in the bud the explosion. The blower for suppling inactivated gas has big impeller with heavy weight to achieve the high pressure, it causes a delay for first operation time and too much load is delivered to motor, total destruction by fire of motor is happening frequently. On this research, we will reduce the size & weight of impeller and install it with several stage, it makes an effect for reducing the first operation time. We also intend to contribute to efficient IGG blower design by research a flowing & pressure specialty from the diameter of impeller, number of blade, and size of casing.

  • PDF

Flow Evaluations of Centrifugal Pump Impeller Using Commercial Code (상용코드를 이용한 원심펌프 임펠러 유동평가)

  • Shim, Chang-Yeul;Hong, Soon-Sam;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.285-292
    • /
    • 2000
  • Numerical calculation is applied to centrifugal pump at design condition by using commercial code STAR-CD and Tascflow, and these results are compared with experimental data at impeller outlet. Numerical analysis is also performed by changing turbulence model and discretization scheme at design condition using Tascflow. Turbulence model and discretization scheme used to Tascflow are k-$\epsilon$, k-$\omega$ turbulence model and upwind, modified linear profile scheme. W;th the same turbulence model and discretization scheme, two results of STAR-CD and Tascflow are very similar. But there is significant difference in numerical results near hub and shroud of impeller with different kinds of turbulent model and discretization scheme at design condition. And with k- $\omega$ turbulence model and modified linear profile scheme, it is showed that numerical results are very similar to experimental results of impeller outlet

  • PDF

Numerical Analysis for the Internal Flow of Thermal Vapor Compressor with real gas equation of state (실제기체 상태방정식을 적용한 열압축기 내부유동에 대한 수치해석)

  • Kang, Wee-Kwan;Choi, Du-Yeol;Shin, Jee-Young;Kim, Moo-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.216-223
    • /
    • 2011
  • TVC is a kind of ejector which entrains low pressure working fluid by using the high pressure working fluid. While most papers relating with ejectors treat the working fluid as an ideal gas for convenience, the fluid doesn't behave as the ideal gas when phase change occurs. In this study, numerical analysis is conducted by applying Redlich-Kwong equation of state instead of ideal gas equation of state. Two turbulent models are compared for the better prediction and SST k-${\omega}$ model is preferred rather than realizable k-${\epsilon}$ model by comparison. Energy loss at the diffuser inlet and throat using the real gas equation of state is relatively greater than that using ideal gas law. For the real gas case, pressure increase due to shock train at the diffuser outlet is relatively smaller than the ideal gas case, but both cases have the same pressure increase due to a pseudo shock.

A Numerical Study of Smoke Movement in Atrium Fires with Ceiling Hea Flux (천장에 열 유속을 갖는 대형 공간에서 화재 발생시 연기거동에 대한 수치해석적 연구)

  • 정진용;유홍선;김성찬;김충익
    • Fire Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.20-29
    • /
    • 1999
  • This paper describes the smoke filling process of a fire field model based on a self-developed SMEP(Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of atrium space containing a ceiling heat flux. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k- epsilon turbulence model with buoyancy term. Compressibility is assumed and the perfect gas law is used. The results of the calculated upper-layer average temperature and smoke layer interface height has shown reasonable agreement compared with the zone models. The zone models used are the CFAST developed at the Building and Fire Research Laboratory NIST U.S.A. and the NBTC one-room of FIRECALC developed at CSIRO, Australia. The smoke layer interface heights that are important in fire safety were not as sensitive as the smoke layer temperature to the nature of ceiling heat flux condition.

  • PDF

Generation and Maximum Run-up Heights of Cnoidal Waves (크노이드파의 발생과 최대 처오름높이)

  • 조용식;전찬후
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.80-85
    • /
    • 2003
  • This paper describes the generation and maximum run-up heights of cnoidal waves with varying periods by the numerical model. The model solves the Reynolds equations and the k-epsilon equations for the turbulent analysis. To track free surface displacements, the volume of fluid(VOF) method is employed. It is shown that profiles of the numerically generated cnoidal waves agree well with analytical solutions. The computed maximum run-up heights are compared with laboratory measurements and those of the boundary element method. The present model provides more agreeable results to laboratory measurements that the boundary element model.

A Numerical Study on Flows Over Two-Dimensional Simplified Vehicle-Like Body (단순화된 2차원 자동차형 물체주위 유동에 관한 수치해석적 연구)

  • 강신형;이영림;유정열;이택시;김응서
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.277-286
    • /
    • 1989
  • Turbulent flows around two-dimensional vehicle-like bodies in ground proximity are numerically simulated. The Reynolds averaged Navier-Stokes equations with a k-.epsilon. turbulence model are numercally solved, and a body-fitted coordinate system is used. It is shown that the simulation is acceptable in comparison with limitted data measured in the wind-tunnel. According to numerical simulations, drag coefficients are under-estimated and lift coefficients are over-estimated during the model test in the wind-tunnel if the ground is fixed. Such ground effects are reduced as Reynolds number is increased. Reducing the gap between the vehicle and the ground make drag coefficients smaller and lift coefficients larger. The changes in static pressure distributions on the bottom and the rear surface play dominent roles in determination of the drag and the lift of the body in ground proximity. Drag component less than 10% of the total amount is contributed by skin-frictions. When the slant-angle of the body is reduced, the drag shows its minimum value and the lift shows its maximum value at about 22 degree.