• Title/Summary/Keyword: $d_{31},d_{33}$모드

Search Result 4, Processing Time 0.022 seconds

Effective material properties of radially poled piezoelectric ring transducer for analysis of tangentially poled piezoelectric ring (원주 분극 압전 링 트랜스듀서 해석을 위한 방사 분극 링 유효 물성 도출)

  • Lee, Haksue;Cho, Cheeyoung;Park, Seongcheol;Cho, Yo-Han;Lee, Jeong-min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.184-192
    • /
    • 2019
  • Compared to 31-mode rings, 33-mode rings are highly utilized as wide bandwidth underwater acoustic transducers because the electro-mechanical coupling and piezoelectric constant d are high. On the other hand, the 31-mode ring is an axial symmetry structure, so it is possible to model it as a simple two-dimensional asymmetrical model for numerical analysis, but the 33-mode ring requires a three-dimensional numerical analysis. That is, a lot of computing resources and computation time are required. In this study, the effective material properties of an equivalent 31-mode ring were derived to simulate the electro-mechano-acoustical responses of the 33-mode ring transducer. Using the effective material properties derived from this study, a numerical analysis of rings in vacuum, air backed rings in water, and FFR (Free Flooded Ring) transducers were performed to compare the responses of 33-mode rings.

Comparison between $d_{31}\;and\;d_{33}$ actuation characterization of the PZT micro-actuator for RF MEMS switch (RF 스위치 적용을 위한 박막 PZT 엑추에이터의 $d_{31}$ 구동과 $d_{33}$ 구동 특성 비교)

  • Shin M.J.;Seo Y.H.;Choi D.S.;Whang K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.467-468
    • /
    • 2006
  • In this work, we present the comparison between $d_{31}\;and\;d_{33}$ mode characterization using the PZT micro-actuator for large displacement. The PZT micro-actuator consisted of Si, PZT, and Pt layer on SOI wafer. The electrode shapes were laminated and interdigitated for $d_{31}\;and\;d_{33}$ mode, respectively. In order to characterize the actuation mode, we measured the displacement using laser interferometer. The maximum displacement of d31 mode was $12.2{\mu}m$ at 10V, the actuation characterization of d31 was better than that of d33 mode. We estimated that displacement of d33 mode would be larger than that of d31 above 30V.

  • PDF

Modeling and fabrication of $1.31/1.55\mu\textrm{m}$ coarse WDM optical directional coupler using $Ag^+-Na^+$ ion-exchanged glass ($Ag^+-Na^+$이온교환법을 이용한 $1.31/1.55\mu\textrm{m}$ 두파장 방향성 광 결합기의 모델링 및 제작)

  • 강동성
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.335-339
    • /
    • 2000
  • A $1.31/1.55\mu\textrm{m}$ coarse WDM opncal dIrectional coupler that conslsls of two idenlical straight channel waveguides in BK7 glass has been fabricated. The separatIOn between two channel waveguides is $8\mu\textrm{m}$ and the wavegu.ide width is $4\mu\textrm{m}$ . Especlally, we assumed that the index profile is Gaussian function and complementary error function in the width direction and depth direction, respectrvely. This directional coupler operating at $1.31/1.55\mu\textrm{m}$ with crosstalk of 18dB is demonstrated and has the 16 mm long length with 12.6 mm coupling region.region.

  • PDF

DLC Structure Layer for Piezoelectric MEMS Switch (압전 MEMS 스위치 구현을 위한 DLC 구조층에 관한 연구)

  • Hwang, Hyun-Suk;Lee, Kyong-Gun;Yu, Young-Sik;Lim, Yun-Sik;Song, Woo-Chang
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.28-31
    • /
    • 2011
  • In this paper, a new set of structural and sacrificial material that is diamond like carbon (DLC)/photoresist for high performance piezoelectric RF-MEMS switches which are actuated in d33 mode is suggested. To avoid curing problem of photoresist sacrificial layer, DLC structure layer is deposited at room temperature by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) method. And lead zirconate titanate (PZT) piezoelectric layer is deposited on structure layer directly at room temperature by rf magnetron sputtering system and crystallized by rapid thermal annealing (RTA) equipment. Particular attention is paid to the annealing of PZT film in order to crystallize into perovskite and the variation of mechanical properties of DLC layer as a function of annealing temperature. The DLC layer shows good performance for structure layer in aspect to Young's modulus and hardness. The fabrication becomes much simpler and cheaper with use of a photoresist.