• Title/Summary/Keyword: $ZrSiO_4$

Search Result 310, Processing Time 0.023 seconds

A Study on the Grinding Characteristics of Ceramics (세라믹 재료의 연삭 특성에 관한 연구)

  • 정을섭;김성청;김태봉;소의열;이근상
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.86-92
    • /
    • 2002
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel far ceramic materials. Normal component of grinding resistance of $Al_2$O$_3$ was less then that of $Si_3 N_4$ and $ZrO_2$. This seems to be the characteristics of ceramic tools on work pieces both of high hardness. For the case of $Si_3 N_4$ and $ZrO_2$, as the mesh number of wheel increases, the surface roughness decreases. For the case of $Al_2 O_3$, the surface roughness does not decreases. Specific binding energy decreases as the material removal rate per unit time increases. For the case of $Si_3 N_4$ and $ZrO_2$, grinding is carried out by abrasive wear processes. For the case of $Al_2 O_3$, grinding is carried out by grain shedding process due to brittle fracture.

Resistive Switching Properties of Cr-Doped SrZrO3 Thin Film on Si Substrate (실리콘 기판위에서의 Cr-Doped SrZrO3 박막의 저항변화 특성)

  • Yang, Min-Kyu;Ko, Tae-Kuk;Park, Jae-Wan;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.241-245
    • /
    • 2010
  • One of the weak points of the Cr-doped SZO is that until now, it has only been fabricated on perovskite substrates, whereas NiO-ReRAM devices have already been deposited on Si substrates. The fabrication of RAM devices on Si substrates is important for commercialization because conventional electronics are based mainly on silicon materials. Cr-doped ReRAM will find a wide range of applications in embedded systems or conventional memory device manufacturing processes if it can be fabricated on Si substrates. For application of the commercial memory device, Cr-doped $SrZrO_3$ perovskite thin films were deposited on a $SrRuO_3$ bottom electrode/Si(100)substrate using pulsed laser deposition. XRD peaks corresponding to the (112), (004) and (132) planes of both the SZO and SRO were observed with the highest intensity along the (112) direction. The positions of the SZO grains matched those of the SRO grains. A well-controlled interface between the $SrZrO_3$:Cr perovskite and the $SrRuO_3$ bottom electrode were fabricated, so that good resistive switching behavior was observed with an on/off ratio higher than $10^2$. A pulse test showed the switching behavior of the Pt/$SrZrO_3:Cr/SrRuO^3$ device under a pulse of 10 kHz for $10^4$ cycles. The resistive switching memory devices made of the Cr-doped $SrZrO_3$ thin films deposited on Si substrates are expected to be more compatible with conventional Si-based electronics.

Properties of the $\beta$-SiC+39vol.%$ZrB_2$ Composites with $Al_2O_3+Y_2O_3$ additives ($Al_2O_3+Y_2O_3$를 첨가한 $\beta$-SiC+39vol.%$ZrB_2$ 복합체의 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Jin, Hong-Bum;Park, Gi-Yub;Yea, Dong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1913-1915
    • /
    • 1999
  • The ${\beta}-SiC+ZrB_2$ ceramic composites were hot-press sintered and annealed by adding 1, 2, 3wt% $Al_2O_3+Y_2O_3$(6 : 4wt%) powder as a liquid forming additives at $1950^{\circ}C$ for 4h. In this microstructures, no reactions were observed between $\beta$-SiC and $ZrB_2$, and the relative density is over 90.79% of the theoretical density and the porosity decreased with increasing $Al_2O_3+Y_2O_3$ contents. Phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H, 4H), $ZrB_2$, $Al_2O_3$ and $\beta$-SiC(15R). Flexural strength showed the highest of 315.46MPa for composites added with 3wt% $Al_2O_3+Y_2O_3$ additives at room temperature. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed the highest of $5.5328MPa{\cdot}m^{1/2}$ for composites added with 2wt% $Al_2O_3+Y_2O_3$ additives at room temperature.

  • PDF

Porous Alkali Resistance Glass Preparation of ZrO2-SiO2 System by the Sol-Gel Method (졸-겔법에 의한 내알칼리성 다공질 ZrO$_2$-SiO$_2$계 유리 제조)

  • 신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.35-40
    • /
    • 1992
  • Porous glass in the ZrO2-SiO2 system containing up to 30 mol% zirconia were prepared from the mixed solutions of Zr(O.nC3H7)4 and partially prehydrolyzed TEOS by the sol-gel method. Pore characteristics, physical properties and alkali resistance were investigated. The gels converted into the porous glass by heating at $700^{\circ}C$, it was found that the glass like skeleton was already made up in lower temperature regions. The specific surface area of the porous glass was 227 $m^2$/g, average mean pore size was about 19$\AA$ and porosity was 19.2%, pore characteristics and physical properties depended on heating temperature. Alkali resistance of the porous glass increased as the zirconia content increased, because of the appearance of Zr-enriched layer at glass surface.

  • PDF

FABRICATIO0N OF NASICON ELECTROLYTES

  • Choi, Soon-Don;Park, Jung-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.35-42
    • /
    • 1995
  • Conventional ball-milling technique was used to synthesize NASICON powders. The NASICON powders were made from three kinds of component powders : coarse($ZrO_{2}$, $Na_{3}PO_{4}$, $SiO_{2}$), fine ($ZrO_{2}$, $Na_{3}PO_{4}$, $SiO_{2}$) and fine ($ZrSiO_{4}$, $Na_{3}PO_{4}$) powders. The fine component powders were easily reacted to form the desired product at $1100^{\circ}C$ or higher, whereas incomplete reaction due to the coarse component powders occurred even at $1170^{\circ}C$. The finer the grain size of the starting powders was, the higher the bulk density of NASICON electrolyte after sintering was observed. Almost single phase NASICON electrolytes with more than 95% of the theoretical density, $3.27g/cm^{3}$, could be fabricated by sintering for $40{\sim}60$ hours at temperatures between 1150 and $1170^{\circ}C$.

  • PDF

The Development of an Electroconductive SiC-ZrB2 Ceramic Heater through Spark Plasma Sintering

  • Ju, Jin-Young;Kim, Cheol-Ho;Kim, Jae-Jin;Lee, Jung-Hoon;Lee, Hee-Seung;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.538-545
    • /
    • 2009
  • The SiC-$ZrB_2$ composites were fabricated by combining 30, 35, 40 and 45vol.% of Zirconium Diboride (hereafter, $ZrB_2$) powders with Silicon Carbide (hereafter, SiC) matrix. The SiC-$ZrB_2$ composites, the sintered compacts, were produced through Spark Plasma Sintering (hereafter, SPS), and its physical, electrical, and mechanical properties were examined. Also, the thermal image analysis of the SiC-$ZrB_2$ composites was examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via X-Ray Diffractometer (hereafter, XRD) analysis. The relative density of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$, and SiC+45vol.%$ZrB_2$ composites were 88.64%, 76.80%, 79.09% and 88.12%, respectively. The XRD phase analysis of the sintered compacts demonstrated high phase of SiC and $ZrB_2$ but low phase of $ZrO_2$. Among the SiC-$ZrB_2$ composites, the SiC+35vol.%$ZrB_2$ composite had the lowest flexural strength, 148.49MPa, and the SiC+40vol.%$ZrB_2$ composite had the highest flexural strength, 204.85MPa, at room temperature. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ and SiC+45vol.%$ZrB_2$ composites were $6.74\times10^{-4}$, $4.56\times10^{-3}$, $1.92\times10^{-3}$, and $4.95\times10^{-3}\Omega{\cdot}cm$ at room temperature, respectively. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$ SiC+40vol.%$ZrB_2$ and SiC+45[vol.%]$ZrB_2$ composites had Positive Temperature Coefficient Resistance (hereafter, PTCR) in the temperature range from $25^{\circ}C$ to $500^{\circ}C$. The V-I characteristics of the SiC+40vol.%$ZrB_2$ composite had a linear shape. Therefore, it is considered that the SiC+40vol.%$ZrB_2$ composite containing the most outstanding mechanical properties, high resistance temperature coefficient and PTCR characteristics among the sintered compacts can be used as an energy friendly ceramic heater or electrode material through SPS.

A study of the microstructures and electrical properties of $ZrO_2$ thin film on Si(100) (증착조건 및 열처리조건에 따른 $ZrO_2$박막의 미세구조와 전기적 특성에 관한 연구)

  • 유정호;남석우;고대홍;오상호;박찬경
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.341-345
    • /
    • 2000
  • We investigated the microstructures and the electrical properties of $ZrO_2$thin films deposited by reactive DC magnetron sputtering on (100) Si with different deposition conditions and annealing treatments. The refractive index of the $ZrO_2$ thin films increased with annealing temperatures and deposition powers, and approached to the ideal value of 2.0~2.2. The $ZrO_2$thin films deposited at the room temperature are amorphous, and the films are polycrystalline at the deposition temperature of $300^{\circ}C$. Both the thickness of the interfacial oxide layer and the root-mean-square (RMS) value of surface roughness increased upon annealing in the oxygen ambient. The Cmax value and leakage current value decreased with the increase of thickness of the interfacial oxide thickness.

  • PDF

Properties and Manufacture of $\beta-SiC-ZrB_2$ Composites Densified by Liquid-Phase Sintering(II) (액상소결에 의한 $\beta-SiC-ZrB_2$ 복합체의 제조와 특성(II))

  • Yoon, Se-Won;Hwang, Chul;Ju, Jin-Young;Shin, Yong-Deok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.92-97
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-SiC+39vol. %ZrB2 electroconductive ceramic composites were investigated by adding 1, 2, 3wt% Al2O3+Y2O3(6:4wt%) of the liquid forming additives. In this microstructures, no reactions were observed between $\beta-SiC$ and ZrB2. The relative density is over 90.8% of the theoretical density and the porosity decreased with increasing Al2O3+Y2O3 contents. Phase analysis of the composites by XRD revealed $\alpha-SiC(6H, 4H)$, ZrB2 and $\beta-SiC$(15R). Flexural srength showed the highest of 315.5MPa for composites added with 3wt% Al2O3+Y2O3 additives as room temperature. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 5.5MPa.m1/2 and 5.3MPa.m1/2 for composites added with 2wt% and 3wt% Al2O3+Y2O3 additives respectively at room temperature. The area fraction of the elongated SiC grain in the etched surface of sample showed 65% and 65.1% for composite added with 2wt% and 3wt% Al2O3+Y2O3 additives respectively. The electrical resistivity at room temperature. The electrical resistivity of the composites wall all positive temperature coefficient(PTCR) against temperature up to $700^{\circ}C$.

  • PDF

Fabrication and characteristics of porous ceramics from $ZrTiO_4$ based ceramic material (다공성 $ZrTiO_4$ 재료의 제조 및 특성)

  • Hur, Geun;Myoung, Seong-Jae;Lee, Yong-Hyun;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2008
  • Cordierite has a very low thermal expansion coefficient, but has problem that it has a weak mechanical strength and is apt to be attacked by acid such as sulfur for using as a diesel particulate filter support. The physical properties of $ZrTiO_4$ modified with $SiO_2,\;Al_2O_3$, MoOx, $Cr_2O_3\;and\;Nb_2O_5$ were investigated with XRD, SEM, UTM and thermal expansion, etc. in this paper. $ZrTiO_4$ powder was synthesized as a monoclinic structure with processes that starting materials of $TiO_2\;and\;ZrO_2$ were mixed with ball mill and calcined above $1240^{\circ}C$ for 3 hr. Additive modified $ZrTiO_4$ specimens for flexural strength and thermal expansion measurement were obtained by mixing $ZrTiO_4$ powder with additives, pressing and firing at $1300^{\circ}C$ for 3 hr. The porosity of additive modified $ZrTiO_4$ decreased monotonically with increasing additive content by 5 wt% regardless of additive types and saturated for further increase of additive by 10wt. The flexural strength of $Al_2O_3$ (5, 10 wt%) modified $ZrTiO_4$ shows a large increase, but that of other additives modified $ZrTiO_4$ decreased. The thermal expansion coefficient of additive modified $ZrTiO_4$ except $Nb_2O_5$ decreased continuously with the content of additive. In particular, the lowest thermal expansion coefficient of $ZrTiO_4$ was obtained for the additive of $SiO_2$.