• Title/Summary/Keyword: $ZrO_2-8%Y_2O_3$

Search Result 449, Processing Time 0.026 seconds

A Study on High Temperature Fracture Behavior of Plasma Sprayed Zirconia/ NiCrAlY Coating System (지르코니아 /NiCrAlY 계 플라즈마 용사피막의 고온 파괴거동에 관한 연구)

  • Kim, Yeon-Jik;Im, Jae-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3234-3242
    • /
    • 1996
  • This paper describes experimental results of modified small punch( MSP) test conducted to evaluate the fracure characteristics and mechanical properties of plasma sparayed zirconia ($ZrO_2$ stabilized with 8wt. % $Y_20_3$ : YSZ) NiCrAlY composite. The mixing ratios of YSZ/NiCrAlY were 0/100, 25/75, 50/50, 100/0 v.%. Test temperatures ranged from 293K to 1473K. This study is directed at development of thermal barrrier coating(TBC) system with superior heat resistance and mechanical properties. The microstructure and fracture process of the composite were examined by SEM and AE method. The mechanical properties of 100% YSZ were nearly independent of the temperatures tested in this study. In contrast, the NiCrAlY-containing composites showed a significant decrease of the mechanical properties above 1273K, showing a ductile- brittle transition behavior up to the temperature. Furthermore, it can seen that 25% YSZ/75% NiCrAlY composite gave the highest fracure strength and fracture energy among the mixing ratio tested over the temperature range.

The Effects of PZT Ratio and Sr Doping on the Piezoelectric Properties in PZN-PNN-PZT (PZN-PNN-PZT계 압전 조성에서 PZN 함량과 Sr Doping이 압전 특성에 미치는 영향)

  • Choi, Jeoung Sik;Lee, Chang Hyun;Shin, Hyo Soon;Yeo, Dong Hun;Lee, Joon Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.19-23
    • /
    • 2018
  • In a Pb-included piezoelectric composition, $Sr_yPb_{1-y}[(Zn_{1/3}Nb_{2/3})_x-(Ni_{1/3}Nb_{2/3})_{0.2}-(Zr_{0.46}Ti_{0.54})_{0.8-x}]O_3$ was selected in order to attain high piezoelectric properties. According to the PZN ratio (x) and the amount of Sr doping (y), the crystal structure, microstructure and piezoelectric properties were measured and evaluated. In the case of Sr 4 mol% doping, the piezoelectric properties were the highest for a PZN ratio of 0.1. In this condition, the grain size was larger and the intensity was higher. With the PZN ratio fixed and varying the Sr doping, the piezoelectric properties increased until 10 mol% doping and then decreased for over 12 mol% doping. In the case of x=0.1 and y=10 mol%, the best piezoelectric properties were obtained, i.e., $d_{33}=660pC/N$ and $k_p=68.5%$, and these values seem to be related to the grain size and crystal structure.

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

AN EXPERIMENTAL STUDY OF THE EFFECT OF ALUMINA AND ZIRCONIA ON MECHANICAL PROPERTIES OF DENTAL CORE PORCELAIN (Alumina와 zirconia가 치과용 코아 도재의 물리적 성질에 미치는 영향에 관한 실험적 연구)

  • Shin Hyeon-Soo;Lee Sang-Jin;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.317-349
    • /
    • 1993
  • This study investigated the effect of filler particle size and weight% on mechanical properties of dental core porcelain. In alumina, variation in particle size and weight% and in zirconia, variation in weight%, all specimens were tested three-point bending strength, transmittance, thermal expansion coefficient, porosity and shrinkage and observed with SEM and analysed with X-ray diffractometer. In order to develop shrink-free porcelain, after firing alumina only, glass wasinfiltrated. And aluminum was added to alumina with the expanding character of aluminum oxidize into alumina, and was followed by second firing of glass infiltration procedure. Then mechanical properties were observed. The results of this study were obtained as follows. 1. The bending strength of zirconia was higher than that of alumina, and $5{\mu}m$ alumina had highest strength in variation of particle size of alumina. Except for $5{\mu}m$ alumina, increased with weight%, bending strength increased up to 80% and decreased at 90%. In case of glass infiltration, bending strength was slight higher than 80% and 90% of $5{\mu}m$ alumina. 2. Transmittance increased with increase of shrinkage, decrease of porosity, and with increase of filler size and had no direct correlation with weight%. 3. Thermal expansion coefficient of alumina group was $7.42\sim8.64\times10^{-6}/^{\circ}C$ and that of zirconia group was $9.83\sim12.11\times10^{-6}/^{\circ}C$ and the latter was higher than the former. 4. In x-ray diffraction analysis, alumina group and zirconia group increased $Al_2O_3$ peak and $t-ZrO_2$ peak with increase of weight%. The second phase(cristobalite peak) was observed in zirconia 40% group. 5. Porosity of zirconia was lower than that of alumina and $5{\mu}m$ alumina group had many pores with SEM. In case of low filler content, fracture occurred in glass and high filler content, in glass and filler. In case of aluminum addition to alumina, small oxidised aluminum was observed. 6. Zirconia group had high shrinkage than alumina group, and mixed group of alumina group had high shrinkage. In case of glass infiltration, shrinkage decreased and aluminum addition to alumina group was almost shrink-free.

  • PDF

Measurement of Effective Transverse Piezoelectric Coefficients $(e_{31,f})$ of Fabricated Thick PZT Films on $SiN_x/Si$ Substrates ($SiN_x/Si$ 기판에 제조된 후막 PZT의 횡 압전 계수 $(e_{31,f})$ 측정)

  • Jeon, Chang-Seong;Park, Joon-Shik;Lee, Sang-Yeol;Kang, Sung-Goon;Lee, Nak-Kyu;Ha, Kyoang-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.965-968
    • /
    • 2004
  • Effective transverse Piezoelectric Coefficients $(e_{31,f})$ of thick PZT $(Pb(Zr_{0.52}Ti{0.48}Ti_{0.48})O_3)$ films on $SiN_x/Si$ substrates were measured with PZT thicknesses and top electrode dimensions. $e_{31,f}$ is one of important Parameters characterizing Piezoelectricity of PZT films. Thick PZT films have been used as various sensors and actuators because of their high driving force and high breakdown voltage. Thick PZT films were fabricated on Pt/Ta/$SiN_x$/Si substrates using sol-gel method. Thicknesses of PZT films were $1{\mu}m$ and $1.8{\mu}m$. $|e_{31,f}|$ values of $1.8{\mu}m$-thick-PZT films were higher than those of $1{\mu}$-thick-PZT films. Maximum $|e_{31,f}|$ of $1.8{\mu}$-thick-PZT films was about $50^{\circ}C/m^2$.

  • PDF

PZT thin capacitor characteristics of the using Pt-Ir($Pt_{80}Ir_{20}$)-alloy (Pt-Ir($Pt_{80}Ir_{20}$)-alloy를 이용한 PZT 박막 캐패시터 특성)

  • Jang, Yong-Un;Chang, Jin-Min;Lee, Hyung-Seok;Lee, Sang-Hyun;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.47-52
    • /
    • 2002
  • A processing method is developed for preparing sol-gel derived $Pb(Zr_{1-x}Ti_x)O_3$ (x=0.5) thin films on Pt-Ir($Pt_{80}Ir_{20}$)-alloy substrates. The as-deposited layer was dried on a plate in air at $70^{\circ}C$. And then it was baked at $1500^{\circ}C$, annealed at $450^{\circ}C$ and finally annealed for crystallization at various temperatures ranging from $580^{\circ}C$ to $700^{\circ}C$ for 1hour in a tube furnace. The thickness of the annealed film with three layers was $0.3{\mu}m$. Crystalline properties and surface morphology were examined using X-ray diffractometer (XRD). Electrical properties of the films such as dielectric constant, C-V, leakage current density were measured under different annealing temperature. The PZT thin film which was crystallized at $600^{\circ}C$ for 60minutes showed the best structural and electrical dielectric constant is 577. C-V measurement show that $700^{\circ}C$ sample has window memory volt of 2.5V and good capacitance for bias volts. Leakage current density of every sample show $10^{-8}A/cm^2$ r below and breakdown voltage(Vb) is that 25volts.

  • PDF

Regenerative Endodontic Treatment Without Discoloration of Infected Immature Permanent Teeth Using Retro MTA : Two Case Reports (치수 괴사된 미성숙 영구치에서 Retro MTA를 이용한 변색 없는 재생적 근관치료 : 증례 보고)

  • Kim, Yujeong;Kim, Seonmi;Choi, Namki
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.41 no.4
    • /
    • pp.335-343
    • /
    • 2014
  • Regenerative endodontic treatment has the potential to heal a necrotic pulp, which can affect root development in immature teeth. However, several drawbacks and unfavorable outcomes are associated with regenerative endodontic treatment, of which the most significant is coronal discoloration due to the presence of minocycline in triple antibiotic paste and mineral trioxide aggregate (MTA). To prevent tooth discoloration following pulp treatment, the modified triple antibiotics (ciprofloxacin, metronidazole, clindamycin) were used as canal disinfectants and Retro MTA, a $ZrO_2$-containing calcium aluminate cement, was used to seal the canal. Following access cavity acquisition, the canal was copiously irrigated with 2.5% sodium hypochlorite. A modified triple antibiotic paste was then applied to the canal. Once the tooth was asymptomatic (after between 3 and 8 weeks), Retro MTA was carefully placed over the blood clot or a collagen plug. Follow-up radiographs revealed normal periodontal ligament space and root development. In two cases, successful regenerative endodontic treatment of the infected immature tooth, without discoloration, was achieved with disinfection using modified triple antibiotics and Retro MTA sealing.

휨 구조의 압전 마이크로-켄틸레버를 이용한 진동 에너지 수확 소자

  • Na, Ye-Eun;Park, Hyeon-Su;Park, Jong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.476-476
    • /
    • 2014
  • 서론: 저 전력 소모를 필요로 하는 무선 센서 네트워크 관련 기술의 급격한 발달과 함께 자체 전력 수급을 위한 진동 에너지 수확 기술에 대한 연구가 활발히 이루어지고 있다. 다양한 구조와 소재를 압전 외팔보에 적용하여 제안하고 있다. 그 중에서도 진동 기반의 에너지 수확 소자는 주변 환경에서 쉽게 진동을 얻을 수 있고, 높은 에너지 밀도와 제작 방법이 간단하다는 장점을 가지고 있어 많은 분야에 응용 및 적용 가능하다. 기존 연구에서는 2차원적으로 진동 에너지 수확을 위한 휜 구조의 압전 외팔보를 제안 하였다. 휜 구조를 갖는 압전 외팔보는 각각의 짧은 두 개의 평평한 외팔보가 일렬로 연결된 것으로 볼 수 있다. 하나의 짧고 평평한 외팔보는 진동이 가해지면 접선 방향으로 응력이 생겨 최대 휨 모멘텀을 갖게 된다. 그러므로 휜 구조를 갖는 외팔보는 진동이 인가됨에 따라 길이 방향과 수직 방향으로 진동한다. 하지만, 이 구조는 수평 방향으로 가해지는 진동에 대한 에너지를 수확하기에는 한계점을 가진다. 즉, 3축 방향에서 임의의 방향에서 진동 에너지를 수확하기는 어렵다. 본 연구에서는 3축 방향에서 에너지를 효율적으로 수확할 수 있도록 헤어-셀 구조의 압전 외팔보 에너지 수확소자를 제안한다. 제안된 소자는 길이 방향과 수직 방향뿐만 아니라 수평 방향으로도 진동하여 임의의 방향에서 진동 에너지를 수확할 수 있다. 구성 및 공정: 제안하는 소자는 3축 방향에서 임의의 진동을 수확하기 위해서 길이를 길게 늘이고 길이 방향을 따라 휘어지는 구조의 헤어-셀 구조로 제작하였다. 외팔보의 구조는 외팔보의 폭 대비 길이의 비가 충분히 클 때, 추가적인 자유도를 얻을 수 있다. 그러므로 헤어-셀 구조의 에너지 수확 소자는 기본적인 길이 방향, 수직방향 그리고 수평방향에 더불어 추가적으로 뒤틀리는 방향을 통해서 3차원적으로 임의의 주변 진동 에너지를 수확하여 전기적인 에너지로 생성시킬 수 있다. 제작된 소자는 높은 종횡비를 갖는 무게 추($500{\times}15{\times}22{\mu}m3$)와 길이 방향으로 길게 휜 압전 외팔보($1000{\times}15{\times}1.7{\mu}m3$)로 구성되어있다. 공정 과정은 다음과 같다. 먼저, 실리콘 웨이퍼 위에 탄성층을 형성하기 위해 LPCVD SiNx를 $0.8{\mu}m$와 LTO $0.2{\mu}m$를 증착 후, 각각 $0.03{\mu}m$$0.12{\mu}m$의 두께를 갖는 Ti와 Pt을 하부 전극으로 스퍼터링한다. 그리고 Pb(Zr0.52Ti0.48)O3 박막을 $0.35{\mu}m$ 두께로 졸겔법을 이용하여 증착하고 상부 Pt층을 두께 $0.1{\mu}m$로 순차적으로 스퍼터링하여 형성한다. 상/하부 전극은 ICP(Inductively Coupled Plasma)를 이용해 건식 식각으로 패턴을 형성한다. PZT 층과 무게 추 사이의 보호막을 씌우기 위해 $0.2{\mu}m$의 Si3N4 박막이 PECVD 공정법으로 증착되고, RIE로 패턴을 형성된다. Ti/Au ($0.03/0.35{\mu}m$)이 E-beam으로 증착되고 lift-off를 통해서 패턴을 형성함으로써 전극 본딩을 위한 패드를 만든다. 초반에 형성한 실리콘 웨이퍼 위의 SiNx/LTO 층은 RIE로 외팔보 구조를 형성한다. 이후에 진행될 도금 공정을 위해서 희생층으로는 감광액이 사용되고, 씨드층으로는 Ti/Cu ($0.03/0.15{\mu}m$) 박막이 스퍼터링 된다. 도금 형성층을 위해 감광액을 패턴화하고, Ni0.8Fe0.2 ($22{\mu}m$)층으로 도금함으로써 외팔보 끝에 무게 추를 만든다. 마지막으로, 압전 외팔보 소자는 XeF2 식각법을 통해 제작된다. 제작된 소자는 소자의 여러 층 사이의 고유한 응력 차에 의해 휨 변형이 생긴다. 실험 방법 및 측정 결과: 제작된 소자의 성능을 확인하기 위하여 일정한 가속도 50 m/s2로 3축 방향에 따라 입력 주파수를 변화시키면서 출력 전압을 측정하였다. 먼저, 소자의 기본적인 공진 주파수를 얻기 위하여 수직 방향으로 진동을 인가하여 주파수를 변화시켰다. 그 때에 공진 주파수는 116 Hz를 가지며, 최대 출력 전압은 15 mV로 측정되었다. 3축 방향에서 진동 에너지 수확이 가능하다는 것을 확인하기 위하여 제작된 소자를 길이 방향과 수평 방향으로 가진기에 장착한 후, 기본 공진 주파수에서의 출력 전압을 측정하였다. 진동이 길이방향으로 가해졌을 때에는 33 mV, 수평방향으로 진동이 인가되는 경우에는 10 mV의 최대 출력 전압을 갖는다. 제안하는 소자가 수 mV의 적은 전압은 출력해내더라도 소자는 진동이 인가되는 각도에 영향 받지 않고, 3축 방향에서 진동 에너지를 수확하여 전기에너지로 얻을 수 있다. 결론: 제안된 소자는 3축 방향에서 진동 에너지를 수확할 수 있는 에너지 수확 소자를 제안하였다. 외팔보의 구조를 헤어-셀 구조로 길고 휘어지게 제작함으로써 기본적인 길이 방향, 수직방향 그리고 수평방향에 더불어 추가적으로 뒤틀리는 방향에서 출력 전압을 얻을 수 있다. 미소 전력원으로 실용적인 사용을 위해서 무게추가 더 무거워지고, PZT 박막이 더 두꺼워진다면 소자의 성능이 향상되어 높은 출력 전압을 얻을 수 있을 것이라 기대한다.

  • PDF

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF