DOI QR코드

DOI QR Code

The Effects of PZT Ratio and Sr Doping on the Piezoelectric Properties in PZN-PNN-PZT

PZN-PNN-PZT계 압전 조성에서 PZN 함량과 Sr Doping이 압전 특성에 미치는 영향

  • Choi, Jeoung Sik (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Chang Hyun (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Hyo Soon (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Yeo, Dong Hun (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Joon Hyung (Department of Materials Science and Engineering, Kyungpook National University)
  • 최정식 (한국세라믹기술원 전자융합소재본부) ;
  • 이창현 (한국세라믹기술원 전자융합소재본부) ;
  • 신효순 (한국세라믹기술원 전자융합소재본부) ;
  • 여동훈 (한국세라믹기술원 전자융합소재본부) ;
  • 이준형 (경북대학교 대학원 신소재공학부 전자재료공학)
  • Received : 2017.10.11
  • Accepted : 2017.11.28
  • Published : 2018.01.01

Abstract

In a Pb-included piezoelectric composition, $Sr_yPb_{1-y}[(Zn_{1/3}Nb_{2/3})_x-(Ni_{1/3}Nb_{2/3})_{0.2}-(Zr_{0.46}Ti_{0.54})_{0.8-x}]O_3$ was selected in order to attain high piezoelectric properties. According to the PZN ratio (x) and the amount of Sr doping (y), the crystal structure, microstructure and piezoelectric properties were measured and evaluated. In the case of Sr 4 mol% doping, the piezoelectric properties were the highest for a PZN ratio of 0.1. In this condition, the grain size was larger and the intensity was higher. With the PZN ratio fixed and varying the Sr doping, the piezoelectric properties increased until 10 mol% doping and then decreased for over 12 mol% doping. In the case of x=0.1 and y=10 mol%, the best piezoelectric properties were obtained, i.e., $d_{33}=660pC/N$ and $k_p=68.5%$, and these values seem to be related to the grain size and crystal structure.

Keywords

References

  1. J. J. Wang, Curr. Appl. Phys., 17, 130 (2017). [DOI: http://doi.org//10.1016/j.cap.2016.11.019]
  2. J. A. Schiemer, I. Lascu, R. J. Harrison, A. Kumar, R. S. Katiyar, D. A. Sanchez, N. Ortega, C. S. Mejia, W. Schnelle, H. Shinohara, A.J.F. Heap, R. Nagaratnam, S. E. Dutton, J. F. Scott, and M. A. Carpenter, J. Mater. Sci., 51, 10727 (2016). [DOI: http://doi.org//10.1007/s10853-016-0280-2]
  3. D. Wang, M. Cao, and S. Zhang, J. Am. Ceram. Soc., 95, 3220 (2012). [DOI: http://doi.org//10.1111/j.1551-2916.2012.05300.x]
  4. J. S. Han, C. W. Gal, J. M. Park, and S. J. Park, J. Manuf. Process, 28, 235 (2017). [DOI: http://doi.org/10.1016/j.jmapro.2017.06.008]
  5. Q. C. Wu, M. M. Hao, Z. Q. Zeng, X. C. Wang, W. Z. Lv, and G. F. Fan, Ceram. Int., 43, 10866 (2017). [DOI: http://doi.org//10.1016/j.ceramint.2017.05.119]
  6. Y. Yue, Y. Hou, M. Zheng, X. Yan, and M. Zhu, J. Am. Ceram. Soc., 100, 5211 (2017). [DOI: http://doi.org/10.1111/jace.15054]
  7. G. G. Peng, D. Y. Zheng, C. Cheng, J. Zhang, and H. Zhang, J. Alloys Compd., 693, 1250 (2017). [DOI: http://doi.org/10.1016/j.jallcom.2016.10.079]
  8. G. Peng, C. Chen, J. Zhang, D. Zheng, S. Hu, and H. Zhang, J. Mater. Sci.: Mater. Electron., 27, 3145 (2016). [DOI: http://doi.org/10.1007/s10854-015-4136-3]
  9. K. Wang, X. Zhu, Y. Zhang, and J. Zhu, J. Mater. Sci.: Mater. Electron., 28, 15512 (2017). [DOI: http://doi.org/10.1007/s10854-017-7439-8]
  10. N. Horchidan, C. E. Ciomaga, R. C. Frunza, C. Capiani, C. Galassi, and L. Mitoseriu, Ceram. Int., 42, 9125 (2016). [DOI: http://doi.org/10.1016/j.ceramint.2016.02.179]
  11. G. F. Fan, M. B. Shi, W. Z. Lu, Y. Q. Wang, and F. Liang, J. Eur. Ceram. Soc., 34, 23 (2014). [DOI: http://doi.org/10.1016/j.jeurceramsoc.2013.07.028]
  12. H. Zheng, I. M. Reaney, W. E. Lee, N. Jones, and H. Thomas, J. Eur. Ceram. Soc., 21, 1371 (2001). [DOI: http://doi.org/10.1016/S0955-2219(01)00021-8]
  13. D. Yuan, Y. Yang, Q. Hu, and Y. Wang, J. Am. Ceram. Soc., 97, 3999 (2014). [DOI: http://doi.org/10.1111/jace.13175]
  14. Y. Zhang, X. Zhu, J. Zhu, X. Zeng, X. Feng, and J. Liao, Ceram. Int., 42, 4080 (2016). [DOI: http://doi.org/10.1016/j.ceramint.2015.11.080]