• 제목/요약/키워드: $ZrO_2$ oxide

검색결과 364건 처리시간 0.031초

Ni3Al-7.8%Cr-1.3%Zr-0.8%Mo-0.025%B 합금의 고온산화막분석 (Characterization of Oxide Scales Formed on Ni3Al-7.8%Cr-1.3%Zr-0.8%Mo-0.025%B)

  • 김기영;이동복
    • 한국재료학회지
    • /
    • 제12권3호
    • /
    • pp.220-224
    • /
    • 2002
  • The oxide scales formed on $Ni_3Al$-7.8%Cr-1.3%Zr-0.8%Mo-0.025%B after oxidation at 900, 1000 and 110$0^{\circ}C$ in air were studied using XRD, SEM, EPMA and TEM. The oxide scales consisted primarily of $NiO,\; NiAl_2O_4,\;{\alpha}-Al_2O_3,\; monoclinic-ZrO_2,\; and \;tetragonal-ZrO_2$. The outer layer of the oxide scale was rich in Ni-oxides, whereas the internal oxide stringers were rich in Al-oxides and $ZrO_2$. Within the above oxide scales, Cr and Mo tended to exist as dissolved ions.

Solid-State 51V NMR and Infrared Spectroscopic Study of Vanadium Oxide Supported on $ZrO_2-WO_3$

  • 손종락;이만호;도임자;배영일
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권8호
    • /
    • pp.856-862
    • /
    • 1998
  • Vanadium oxide catalyst supported on ZrO2-WO3 was prepared by adding the Zr(OH)4 powder into a mixed aqueous solution of ammonium metavanadate and ammonium metatungstate followed by drying and calcining at high temperatures. The characterization of prepared catalysts was performed using solid-state 51V NMR and FTIR. In the case of calcination temperature at 773 K, for the samples containing low loading V2O5 below 18 wt % vanadium oxide was in a highly dispersed state, while for samples containing high loading V2O5 equal to or above 18 wt % vanadium oxide was well crystallized due to the V2O5 loading exceeding the formation of monolayer on the surface of ZrO2-WO3. The ZrV2O7 compound was formed through the reaction Of V2O5 and ZrO2 at 873 K and the compound decomposed into V2O5 and ZrO2 at 1073 K, which were confirmed by FTIR and 51V NMR.

The Effect of Anodizing on the Electrical Properties of ZrO2 Coated Al Foil for High Voltage Capacitor

  • Chen, Fei;Park, Sang-Shik
    • Applied Science and Convergence Technology
    • /
    • 제24권2호
    • /
    • pp.33-40
    • /
    • 2015
  • $ZrO_2$ and Al-Zr composite oxide film was prepared by vacuum assisted sol-gel dip coating method and anodizing. $ZrO_2$ films annealed above $400^{\circ}C$ have tetragonal structure. $ZrO_2$ layers inside etch pits were successfully coated from the $ZrO_2$ sol. The double layer structures of samples were obtained after being anodized at 100 V to 600 V. From the TEM images, it was found that the outer layer was $Al_2O_3$, the inner layer was multi-layer of $ZrO_2$, Al-Zr composite oxide and Al hydrate. The capacitance of $ZrO_2$ coated foil exhibited about 28.3% higher than that of non-coating foil after being anodized at 100 V. The high capacitance of $ZrO_2$ coated foils anodized at 100 V can be attributed to the relatively high percentage of inner layer in total thickness. The electrical properties, such as withstanding voltage and leakage current of coated and non-coated Al foils showed similar values. From the results, $ZrO_2$ and Al-Zr composite oxide is promising to be used as the partial dielectric of high voltage capacitor to increase the capacitance.

Ni-Mn 산화물 NTC 서미스터의 미세구조와 전기적 특성에 미치는 ZrO2첨가의 효과 (Effect of ZrO2 Addition on the Microstructure and Electrical Properties of Ni-Mn Oxide NTC Thermistors)

  • 박경순;방대영;윤성진;최병현
    • 한국세라믹학회지
    • /
    • 제40권1호
    • /
    • pp.11-17
    • /
    • 2003
  • Ni-Mn 산화물 NTC 서미스터의 미세구조와 전기적 특성에 미치는 Zr $O_2$ 첨가의 효과를 연구하였다. Zr $O_2$를 포함하는 Ni-Mn-Zr 산화물 소결체의 주요 상은 입방정 스피넬 구조를 가지는 NiO-Mn$_3$ $O_4$-Zr $O_2$의 고용체와 정방정 결정구조를 가지는 Zr $O_2$ 상이였다. Zr $O_2$의 첨가량이 증가함에 따라 Ni-Mn-Zr산화물의 고용체를 형성하지 못하고 생성된 Zr $O_2$의 양이 증가하였다. NiO-Mn$_3$ $O_4$-Zr $O_2$ NTC 서미스터에 있어서 절대온도 역수(l/T)에 대한 로그 비저항(log $ho$)은 직선적인 관계가 있었고, 비저항, B$_{140}$320/정수 및 활성화 에너지는 Zr $O_2$ 함량이 증가함에 따라 크게 증가하였다.

Atomic layer chemical vapor deposition of Zr $O_2$-based dielectric films: Nanostructure and nanochemistry

  • Dey, S.K.
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제16권9호
    • /
    • pp.64.2-65
    • /
    • 2003
  • A 4 nm layer of ZrOx (targeted x-2) was deposited on an interfacial layer(IL) of native oxide (SiO, t∼1.2 nm) surface on 200 mm Si wafers by a manufacturable atomic layer chemical vapor deposition technique at 30$0^{\circ}C$. Some as-deposited layers were subjected to a post-deposition, rapid thermal annealing at $700^{\circ}C$ for 5 min in flowing oxygen at atmospheric pressure. The experimental x-ray diffraction, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and high-resolution parallel electron energy loss spectroscopy results showed that a multiphase and heterogeneous structure evolved, which we call the Zr-O/IL/Si stack. The as-deposited Zr-O layer was amorphous $ZrO_2$-rich Zr silicate containing about 15% by volume of embedded $ZrO_2$ nanocrystals, which transformed to a glass nanoceramic (with over 90% by volume of predominantly tetragonal-$ZrO_2$(t-$ZrO_2$) and monoclinic-$ZrO_2$(m-$ZrO_2$) nanocrystals) upon annealing. The formation of disordered amorphous regions within some of the nanocrystals, as well as crystalline regions with defects, probably gave rise to lattice strains and deformations. The interfacial layer (IL) was partitioned into an upper Si $o_2$-rich Zr silicate and the lower $SiO_{x}$. The latter was sub-toichiometric and the average oxidation state increased from Si0.86$^{+}$ in $SiO_{0.43}$ (as-deposited) to Si1.32$^{+}$ in $SiO_{0.66}$ (annealed). This high oxygen deficiency in $SiO_{x}$ indicative of the low mobility of oxidizing specie in the Zr-O layer. The stacks were characterized for their dielectric properties in the Pt/{Zr-O/IL}/Si metal oxide-semiconductor capacitor(MOSCAP) configuration. The measured equivalent oxide thickness (EOT) was not consistent with the calculated EOT using a bilayer model of $ZrO_2$ and $SiO_2$, and the capacitance in accumulation (and therefore, EOT and kZr-O) was frequency dispersive, trends well documented in literature. This behavior is qualitatively explained in terms of the multi-layer nanostructure and nanochemistry that evolves.ves.ves.

  • PDF

TiAl-W-Zr 합금에 생성된 고온산화막 분석 (Characterization of Oxide Scales Formed on TiAl-W-Zr Alloys)

  • 우성욱;이동복
    • 한국재료학회지
    • /
    • 제14권6호
    • /
    • pp.394-398
    • /
    • 2004
  • A Ti47Al1.7W-3.7Zr alloy was oxidized between $900^{\circ}C$ and $1050^{\circ}C$, and the oxide scales formed were studied. The oxide scales consisted primarily of an outer$TiO_2$ layer, an intermediate $Al_2$$O_3$-rich layer, and an inner mixed ($TiO _2$ + $Al_2$$O_3$) layer. Besides $TiO_2$ and $Al_2$$O_3$, oxidation led to the formation of some $Ti_2$AlN and TiN. Both W and Zr were preferentially segregated below the intermediate $Al_2$$O_3$-rich layer. Tungsten in the oxide scale was present as $WO_3$ and ${Ti}_{x}$$W_{1-x}$, whereas zirconium as monoclic-$ZrO_2$ and tetragonal-$ZrO_2$.

Preparation and Characterization of Chromium Oxide Supported on Zirconia

  • ;;;배영일
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권6호
    • /
    • pp.605-612
    • /
    • 1992
  • Chromium oxide/zirconia catalysts were prepared by dry impregnation of powdered $Zr(OH)_4$ with ($NH_4$)$_2$CrO$_4$aqueous solution. The characterization of prepared catalysts was performed using FTIR, XPS, XRD and DTA methods, and by the measurement of surface area. The addition of chromium oxide to zirconia shifted the transitions of $ZrO_2$ from amorphous to tetragonal phase and from tetragonal to monoclinic phase to higher temperature due to the strong interaction between chromium oxide and zirconia, and the specific surface area of catalysts increased in proportion to the chromium oxide content. Since the $ZrO_2$ stabilizes supported chromium oxide, chromium oxide was well dispersed on the surface of zirconia, and ${\alpha}$-$Cr_2O_3$ was observed only at the calcination temperature above 1173 K. Upon the addition of only small amount of chromium oxide (1 wt% Cr) to $ZrO_2$, both the acidity and acid strength of catalyst increased remarkably, showing the presence of two kinds of acid sites on the surface of $CrO_x$/$ZrO_4$-Bronsted and Lewis.

$LiF-BeF_2-ZrO_2$ 용융염에서 증류수 침출에 의한 $ZrO_2$의 회수 - 증류수에서 $LiF-BeF_2-ZrF_4+ZrO_2$ 용융염의 용해현상 - (Recovery of $ZrO_2$ by Leaching from $LiF-BeF_2-ZrO_2$ Molten Salt in Distilled Water)

  • 우문식;유재형;박현수;강영호;권수한
    • 분석과학
    • /
    • 제13권6호
    • /
    • pp.712-721
    • /
    • 2000
  • $LiF-BeF_2-ZrF_4$(63-30-7 mol%) 용융염은 상온에서 증류수 1ml당 최고 0.02g까지 용해율 99.9%로 용해되었다. 그리고 $ZrF_4$를 열가수분해시켜 제조된 $ZrO_2$ 산화물을 포함하는 $LiF-BeF_2-ZrF_4$ 용융염에서 $ZrO_2$ 산화물을 증류수로 침출시켜 회수하였다. 회수된 $ZrO_2$ 산화물의 결정모양은 손상되지 않았다.

  • PDF

Characterization of Vanadium Oxide Supported on Zirconia and Modified with MoO3

  • Sohn, Jong-Rack;Seo, Ki-Cheol;Pae, Young-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권3호
    • /
    • pp.311-317
    • /
    • 2003
  • Vanadium oxides supported on zirconia and modified with MoO₃were prepared by adding Zr(OH)₄powder into a mixed aqueous solution of ammonium metavanadate and ammonium molybdate followed by drying and calcining at high temperatures. The characterization of prepared catalysts was performed using FTIR, Raman spectroscopy and solid-state $^{51}V$ NMR. In the case of a calcination temperature of 773 K, for samples containing low loading of $V_2O_5$, below 15 wt %, vanadium oxide was in a highly dispersed state, while for samples containing high loading of $V_2O_5$, equal to or above 15 wt %, vanadium oxide was well crystallized because the $V_2O_5$ loading exceeded the formation of a monolayer on the surface of $ZrO_2$. The $ZrV_2O_7$ compound was formed through the reaction of $V_2O_5\;and\;ZrO_2$ at 873 K and the compound decomposed into $V_2O_5\;and\;ZrO_2$ at 1073 K, which were confirmed by FTIR spectroscopy and solid-state $^{51}V$ NMR. IR spectroscopic studies of ammonia adsorbed on $V_2O_5-MoO_3/ZrO_2$ showed the presence of both Lewis and Bronsted acids.

Solid-State $^{51}V$ NMR and Infrared Spectroscopic Study of Vanadium Oxide Supported on $TiO_2-ZrO_2$

  • 박은희;이만호;손종락
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권9호
    • /
    • pp.913-918
    • /
    • 2000
  • Vanadium oxide catalyst supported on TiO2-ZrO2 has been prepared by adding Ti(OH)4-Zr(OH)4 powder to an aqueous solution of ammonium metavanadate followed by drying and calcining at high temperatures. The char-acterization ofthe prepared catalysts was performed using solid-state 51V NMR and FTIR.In thecase ofcalci-nation temperature at 773 K, vanadium oxide was in a highly dispersed state for the samples containing low loading V2O5 below 25 wt %, but for samplescontaining high loading V2O5 equal to or above 25 wt %, vana-dium oxidewas well crystallized due to the V2O5 loading exceeding the formation of monolayer on the surface of TiO2-ZrO2.The ZrV2O7 compound was formed through the reactionof V2O5 and ZrO2 at 773-973 K, where-as the V3Ti6O17 compound was formedthrough the reaction of V2O5 and TiO2 at 973-1073 K. The V3Ti6O17 compound decomposed to V2O5 and TiO2 at 1173 K, which were confirmed by FTIR and 51V NMR.