• 제목/요약/키워드: $ZrB_2$-SiC

검색결과 90건 처리시간 0.028초

SPS on/off Pulse Time 조건에 따른 SiC-$ZrB_2$ 복합체 특성 (Properties of a SiC-$ZrB_2$ Composite by condition of SPS on/off Pulse Time)

  • 신용덕;주진영;이희승;박진형;김인용;김철호;이정훈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.314-314
    • /
    • 2010
  • The SiC-$ZrB_2$ composites were fabricated by combining 40vol.% of Zirconium Diboride(hereafter, $ZrB_2$) powders with Silicon Carbide(hereafter, SiC) matrix. TheSiC+40vol.%$ZrB_2$ composites were manufactured through Spark Plasma Sintering(hereafter, SPS) under argon atmosphere, uniaxial pressure of 50MPa, heating rate of $100^{\circ}C$/min, sintering temperature of $1,500^{\circ}C$ and holding time of 5min. But one on/off pulse sequence(one pulse time: 2.78ms) is 10:9(hereafter, SZ10), and the other is 48:8(hereafter, SZ48). The physical and mechanical properties of the SZ12 and SZ48 were examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via X-Ray Diffraction(hereafter, XRD) analysis. The apparent porosity of the SZ10 and SZ48 composites were 9.7455 and 12.2766%, respectively. The SZ10 composite, 593.87MPa, had higher flexural strength than the SZ48 composite, 324.78MPa, at room temperature. The electrical properties of the SiC-$ZrB_2$ composites had Positive Temperature Coefficient Resistance(hereafter, PTCR).

  • PDF

ZrB2-SiC 복합세라믹스의 미세구조와 열전도도에 미치는 SiC 크기와 첨가량의 영향 (Effect of the Size and Amount of SiC on the Microstructures and Thermal Conductivities of ZrB2-SiC Composite Ceramics)

  • 김성원;권창섭;오윤석;이성민;김형태
    • 한국분말재료학회지
    • /
    • 제19권5호
    • /
    • pp.379-384
    • /
    • 2012
  • This paper reports the microstructures and thermal conductivities of $ZrB_2$-SiC composite ceramics with size and amount of SiC. We fabricated sintered bodies of $ZrB_2$-x vol.% SiC (x=10, 20, 30) with submicron and nanosized SiC densified by spark plasma sintering. Microstructure retained the initial powder size of especially SiC, except the agglomeration of nanosized SiC. For sintered bodies, thermal conductivities were examined. The observed thermal conductivity values are 40~60 W/mK, which is slightly lower than the reported values. The relation between microstructural parameter and thermal conductivity was also discussed.

초고온용 ZrB2-계 세라믹스의 치밀화와 물성 (Densification and Properties of ZrB2-based Ceramics for Ultra-high Temperature Applications)

  • 김성원;김형태;김경자;서원선
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.273-278
    • /
    • 2012
  • $ZrB_2$ has a melting temperature of $3245^{\circ}C$ and a low density of $6.1\;g/cm^3$, which makes this a candidate for application to ultra-high temperature over $2000^{\circ}C$. Beside these properties, $ZrB_2$ has excellent resistance to thermal shock and oxidation compared with other non-oxide engineering ceramics. This paper reviewed briefly 2 research examples, which are related to densification and properties of $ZrB_2$-based ceramics for ultra-high temperature applications. In the first section, the effect of $B_4C$ addition on the densification and properties of $ZrB_2$-based ceramics is shown. $ZrB_2$-20 vol.% SiC system was selected as a basic composition and $B_4C$ or C was added to this system in some extents. With sintered bodies, densification behavior and hightemperature (up to $1400^{\circ}C$) properties such as bending strength and hardness are examined. In the second section, the effect of the SiC size on the microstructures and physical properties is shown. $ZrB_2$-SiC ceramics are fabricated by using various SiC sources in order to investigate the grain-growth inhibition and the mechanical/thermal properties of $ZrB_2$-SiC.

액장 소결에 의한 $\beta-SiC-ZrB_2$ 복합체의 제조와 특성 (Properties and Manufacture of the $\beta-SiC-ZrB_2$ Composited Densified by Liquid-Phase Sintering.)

  • 신용덕;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권2호
    • /
    • pp.92-97
    • /
    • 1999
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta-Sic$+39vol.%$ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3(6:4wt%)$. In this microstructures, no reactions and elongated $\alpha$-SiC grains with equiaxed $ZrB_2$, gains were observed between $\beta-SiC$ and $ZrB_2$, and the relative density was over 97.6% of the theoretical density. Phase analysis of the composites by XRD revealedmostly of $\alpha$-SiC(6H, 4H), $ZrB_2$, and weakly $\beta-SiC$(15R) phase. The fracture toughness decreased with increasing $Al_2O_3+Y_2O_3$ contents and showed the highest of $6.37MPa.m^{\fraction ane-half}$ for composite added with 4wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity increased with increasing $Al_2O_3+Y_2O_3$contents and showed the lowest of $1.51\times10^{-4}\Omega.cm$ for composite added with $Al_2O_3+Y_2O_3$ additives at $25^{\circ}C$. This reason is the increasing tendency of pore formation according to amount of liquid forming additives $Al_2O_3+Y_2O_3$. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) against temperature up to $700^{\circ}C$.

  • PDF

무가압소결한 $\beta$-SiC-$ZrB_2$계 도전성 복합체의 제조 및 기계적, 전기적 특성 (Mechanical, Electrical Properties and Manufacture of the $\beta$-SiC-$ZrB_2$ Electroconductive Ceramic Composites by Pressureless Sintering)

  • 신용덕;권주성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권2호
    • /
    • pp.98-103
    • /
    • 1999
  • The effect of $Al_2O_3$ additives to $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composites by pressureless sintering on microstructural, mechanical and electrical properties were investigated. The $\beta-SiC+39vol.%ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_2O_3$ powder as a liquid forming additives at $1950^{\cire}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha-SiC(6H), ZrB_2$ and weakly $\alpha-SiC(4H), \beta-SiC (15R)$ phase. The relative density of composites was lowered by gaseous products of the result of reaction between \beta-SiC and Al_2O_3$, therefore, porosity was increased with increasing $Al_2O_3$ contents, and showed the maximum value of 1.4197MPa.$m^{1/2}$ for composite with 4wt.% $Al_2O_3$ additives. The electrical resistivity of $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composite was increased with increasing $Al_2O_3$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature range of $25^{\cire}C$ to $700^{\cire}C$.

  • PDF

무가압소결(無加壓燒結)한 ${\beta}-SiC-ZrB_2$ 복합체(複合體)의 파괴인성(破壞忍性)과 전기전도성(電氣傳導性)에 미치는 기공(氣孔)의 영향 (Effect of Porosity on the Fracture Toughness and Electrical Conductivity of Pressureless Sintered ${\beta}-SiC-ZrB_2$ Composites)

  • 신용덕;권주성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.847-849
    • /
    • 1998
  • The effect of $Al_{2}O_{3}$ additives on the microstructure, mechanical and electrical properties of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites by pressureless sintering were investigated. The ${\beta}$-SiC+39vol.%$ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_{2}O_{3}$ powder as a liquid forming additives at $1950^{\circ}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and weakly $\alpha$-SiC(4H), $\beta$-SiC(15R) phase. The relative density of composites was lowered by gaseous products of the result of reaction between $\beta$-SiC and $Al_{2}O_{3}$ therefore, porosity was increased with increased $Al_{2}O_{3}$ contents. The fracture toughness of composites was decreased with increased $Al_{2}O_{3}$ contents, and showed the maximum value of $1.4197MPa{\cdot}m^{1/2}$ for composite added with 4wt.% $Al_{2}O_{3}$ additives. The electrical resistivity of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composite was increased with increased $Al_{2}O_{3}$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

$Al_{2}O_{3}+Y_{2}O_{3}$를 첨가한 $\beta$-SiC-$ZrB_2$ 복합체의 특성 (Properties of the $\beta$-SiC-$ZrB_2$ Composites with $Al_{2}O_{3}+Y_{2}O_{3}$ additives)

  • 신용덕;주진영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.853-855
    • /
    • 1998
  • The electrical resistivity and mechanical properties of the hot-pressed and annealed ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_{2}O_{3}+Y_{2}O_{3}$(6:4wt%). In this microstructures. no reactions were observed between $\beta$-SiC and $ZrB_2$, and the relative density is over 97.6% of the theoretical density. Phase analysis of composites by XRD revealed mostly of a $\alpha$-SiC(6H, 4H), $ZrB_2$ and weakly $\beta$-SiC(15R) phase. The fracture toughness decreased with increased $Al_{2}O_{3}+Y_{2}O_{3}$ contents and showed the highest for composite added with 4wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives. The electrical resistivity increased with increased $Al_{2}O_{3}+Y_{2}O_{3}$ contents because of the increasing tendency of pore formation according to amount of liquid forming additives $Al_{2}O_{3}+Y_{2}O_{3}$. The electrical resistivity of composites is all positive temperature coefficient resistance(PTCR) against temperature up to $700^{\circ}C$.

  • PDF

ZrB2-SiC 복합세라믹스의 미세구조와 기계적 물성에 미치는 소결 공정, 첨가제 효과 (The Effect of Sintering Processes and Additives on the Microstructures and Mechanical Properties of ZrB2-SiC Composite Ceramics)

  • 권창섭;채정민;김형태;김경자;김성원
    • 한국분말재료학회지
    • /
    • 제18권6호
    • /
    • pp.562-567
    • /
    • 2011
  • This paper reports the effect of sintering processes and additives on the microstructures and mechanical properties of $ZrB_2$-SiC composite ceramics. We fabricated sintered bodies of $ZrB_2$-20 vol.% SiC with or without sintering additive, such as C or $B_4C$, densified by spark plasma sintering as well as hot pressing. While almost full densification was achieved regardless of sintering processes or sintering additives, significant grain growth was observed in the case of spark plasma sintering, especially with $B_4C$. With sintered bodies, mechanical properties, such as flexural strength and Vickers hardness, were also examined.

Transmission Electron Microscopy Investigation of Hot-pressed ZrB2-SiC with B4C Additive

  • Kim, Seongwon;Chae, Jung-Min;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.462-466
    • /
    • 2015
  • This paper reports the microstructure of hot-pressed $ZrB_2$-SiC ceramics with added $B_4C$ as characterized by transmission electron microscopy. $ZrB_2$ has a melting point of $3245^{\circ}C$, a relatively low density of $6.1g/cm^3$, and specific mechanical properties at an elevated temperature, making it a candidate for application to environments with ultra-high temperatures which exceed $2000^{\circ}C$. Due to the non-sinterability of $ZrB_2$-based ceramics, research on sintering aids such as $B_4C$ or $MoSi_2$ has become prominent recently. From TEM investigations, an amorphous layer with contaminant oxide is observed in the vicinity of $B_4C$ grains remaining in hot-pressed $ZrB_2$-SiC ceramics with $B_4C$ as an additive. The effect of a $B_4C$ addition on the microstructure of this system is also discussed.

산소-아세틸렌 토치의 조사각이 ZrB2-SiC UHTC 복합체 삭마 특성에 미치는 영향 (Ablation Behavior of ZrB2-SiC UHTC Composite under Various Flame Angle Using Oxy-Acetylene Torch)

  • 이승용;공정훈;송정환;손영일;김도경
    • 한국재료학회지
    • /
    • 제32권12호
    • /
    • pp.553-559
    • /
    • 2022
  • In this work, the ablation behavior of monolith ZrB2-30 vol%SiC (Z30S) composites were studied under various oxy-acetylene flame angles. Typical oxidized microstructures (SiO2/SiC-depleted/ZrB2-SiC) were observed when the flame to Z30S was arranged vertically. However, formation of the outmost glassy SiO2 layer was hindered when the Z30S was tilted. The SiC-depleted region was fully exposed to air with reduced thickness when highly tilted. Traces of the ablated and island type SiO2 were observed at intermediate flame angles, which clearly verified the effect of flame angle on the ablation of the SiO2 layer. Furthermore, the observed maximum surface temperature of the Z30S gradually increased up to 2,200 ℃ proving that surface amorphous silica was continuously removed while monoclinic ZrO2 phase began to be exposed. A proposed ablation mechanism with respect to flame angles is discussed. This observation is expected to contribute to the design of complex-shaped UHTC applications for hypersonic vehicles and re-entry projectiles.