• Title/Summary/Keyword: $Yb_2O_3$

Search Result 179, Processing Time 0.022 seconds

Superconducting Characteristics of Melt Spun $YBa_2Cu_3Ag_{15}$ and $YbBa_2Cu_3Ag_x$ (x=5, 16 and 53) Microcomposites (융체방사법으로 제작한 $YBa_2Cu_3Ag_{15}$$YbBa_2Cu_3Ag_x$ (x=5, 16 and 53)미세복합재의 초전도 특성)

  • Song, Myeong-Yeop
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.880-887
    • /
    • 1995
  • Melt spun YB $a_2$C $u_3$A $g_{15}$ and YbB $a_2$C $u_3$A $g_{x}$(x=5, 16 and 53) precursor alloy ribbons were oxidized at 263~322$^{\circ}C$, and heat-treated at 872~89$0^{\circ}C$ under 1.0atm oxygen pressure. In addition, about ten ribbons were stacked and coupled by pressing, and then followed the same heat treatment. YB $a_2$C $u_3$ $O_{7-{\delta}}$(1-2-3) or YbB $a_2$C $u_3$ $O_{7-{\delta}}$(1-2-3) phase was formed in both the ribbons and the multilayered specimens. The formed 1-2-3 phases were not texturized in all the ribbons, but slightly texturized in the multilayered specimens. $J_{c}$ was not achieved in all the ribbons at 77K and zero magnetic field. Among the multilayered specimens, YB $a_2$C $u_3$A $g_{15}$ and YbB $a_2$C $u_3$A $g_{16}$ showed $J_{c}$ of 260 and 180A/$\textrm{cm}^2$, respectively. YB $a_2$C $u_3$A $g_{15}$ and YbB $a_2$C $u_3$A $g_{16}$ are considered to be the appropriate compositions in producing textured superconducting oxides with improved $J_{c}$ by pressing. Onset critical temperature ( $T_{on}$ ) of the multilayered YB $a_2$C $u_3$A $g_{15}$ was 92K while those of YbB $a_2$C $u_3$A $g_{x}$(x=5 , 16 and 53) were 88~90K. , 16 and 53) were 88~90K.

  • PDF

Preparation of Ferroelectric (YbxY1-x)MnO3 Thin Film by Sol-Gel Method (졸-겔법에 의한 (YbxY1-x)MnO3강유전체 박막제조)

  • 강승구;이기호
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.170-175
    • /
    • 2004
  • The ferroelectric (Y $b_{x}$ $Y_{1-x}$)Mn $O_3$ thin films were fabricated by sol-gel method using Y-acetate, Yb-acetate, and Mn-acetate as raw materials. The stable (Y $b_{x}$ $Y_{1-x}$)Mn $O_3$ precursor solution (sol) was prepared through the reflux process with acetylaceton as a catalyst and coated on Si(100) substrate by spin coating. The heat treatment temperature and, Rw ($H_2O$/alkoxide moi ratio) dependence on crystallinity of thin films were studied. The lowest temperature for obtaining YbMn $O_3$phase and the optimum heat-treatment conditions were proved as at 7$50^{\circ}C$ and 80$0^{\circ}C$, respectively. The hexagonal YbMn $O_3$with c-axis preferred orientation could be obtained at Rw=1 condition. The remanent polarization for the thin films of x=0 or 1 was about 200 nC/㎤ while, for the specimens ot 0< x< 1, were 50∼100 nC/$\textrm{cm}^2$.

Optical Characteristics of Er and Yb co-doped YCa4B3O10 (Er과 Yb이 동시 도핑된 YCa4B3O10의 광 특성)

  • Jang, Won-Kweon;Yu, Young-Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1082-1086
    • /
    • 2007
  • Optical characteristics of $YCOB(YCa_4B_3O_{10})$, known as a crystal of self frequency doubling, was investigated when Yb and Er ions were co-doped 20 % and 2 %, respectively. The absorption cross section of Er,Yb:YCOB crystal at $1.0\;{\mu}m$ was larger than that of Yb:YCOB, which means that the former was profitable for more energy absorption than the latter. The fluorescent lifetime at $1.5\;{\mu}m$ was measured to be 1.27 ms at room temperature, and lengthened to 1.54 ms and 1.62 ms at low temperatures of 77 K and 6 K, respectively. The line widths of fluorescent spectrum at $1.5\;{\mu}m$ were getting narrower as lowering temperature. However, we didn't observe a temperature dependent peak wavelength shift.

High Temperature Durability Amorphous ITO:Yb Films Deposited by Magnetron Co-Sputtering

  • Jung, Tae Dong;Song, Pung Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.242-247
    • /
    • 2012
  • Yb-doped ITO (ITO:Yb) films were deposited on unheated non-alkali glass substrates by magnetron cosputtering using two cathodes (DC, RF) equipped with the ITO and $Yb_2O_3$ target, respectively. The composition of the ITO:Yb films was controlled by adjusting the RF powers from 0 W to 480 W in 120 W steps with the DC power fixed at 70 W. The ITO:Yb films had a higher crystallization temperature ($200^{\circ}C$) than that of the ITO films ($170^{\circ}C$), which was attributed to both larger ionic radius of $Yb^{3+}$ and higher bond enthalpy of $Yb_2O_3$, compared to ITO. This amorphous ITO:Yb film post-annealed at $170^{\circ}C$ showed a resistivity of $5.52{\times}10^{-4}{\Omega}cm$, indicating that a introduction of Yb increased resistivity of the ITO film. However, these amorphous ITO:Yb films showed a high etching rate, fine pattering property, and a very smooth surface morphology above the crystallization temperature of the amorphous ITO films (about $170^{\circ}C$). The transmittance of all films was >80% in the visible region.