• Title/Summary/Keyword: $YBa_{2}Cu_{3}O_{7-x}$ films

Search Result 96, Processing Time 0.028 seconds

STRATEGIC RESEARCH AT ORNL EOR THE DEVELOPMENT OF ADVANCED COATED CONDUCTORS: PART - II

  • Paranthama, M. Parans;Aytug, T.;Sathyamurthy, S.;Zhai, H.Y.;Christen, H.M.;Martin, P.M.;Goyal, A.;Christen, D.K.;Kroeger, D.M.
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.340-340
    • /
    • 2002
  • In an effort to develop alternative single buffer layer technology for YBa$_2$Cu$_3$O$_{7-{\delta}}$ (YBCO) coated conductors, we have investigated both LaMnO$_3$, (LMO) and La$_2$Zr$_2$O$_{7}$ (LZO) as potential buffer layers. High-quality LMO films were grown directly on textured Ni and Ni-W (3%) substrates using rf magnetron sputtering. Highly textured LZO buffers were grown on textured Ni substrates using sol-gel alkoxide processing route. YBCO films were then grown on both LMO and LZO buffers using pulsed laser deposition. Detailed X-ray studies have shown that YBCO films were grown on both LMO and LZO layers with a single epitaxial orientation. A high J$_{c}$ of over 1 MA/cm$^2$ at 77 K and self-field was obtained on YBCO films grown on both LMO-buffered Ni or Ni-W substrates, and also on LZO-buffered Ni substrates. We have identified LaMnO$_3$ as a good diffusion barrier layer for Ni and it also provides a good template for growing high current density YBCO films. Similarly we have also demonstrated the growth of high J$_{c}$ YBCO films on all solution buffers. We will discuss in detail about our buffer deposition processes. processes.s.s.s.s.

  • PDF

Cylindrical Hollow Cathode Sputtering Deposition for Uniform Large Area YBCO Thin Film (균질한 대면적 YBCO 박막증착을 위한 실린더형 할로우 캐소드 스퍼터링 증착법)

  • Suh, Jeong-Dae;Han, Seok-Kil;Sung, Gun-Yong;Kang, Kwang-Yong
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.67-70
    • /
    • 1999
  • We have fabricated YBa$_2Cu_3O_{7-x}$ thin films by cylindrical hollow cathode sputtering. For 2 inch diameter of MgO (100) substrate, we obtained the zero resistance temperature in the range from 83 K to 86 K and thickness uniformity better than 5 % over the whole area. Also, the average deposition rate was 100nm/h which is higher than 10 times compare to conventional off-axis sputtering method. These results indicate that cylindrical hollow cathode sputtering seems to have unique capabilities for high rate and homogeneous deposition of large area thin film.

  • PDF

HTS Broadband-Array Antenna for Satellite Communication

  • 정동철
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.178-182
    • /
    • 2002
  • Superconducting four-element patch array antenna was designed and fabricated using $high-T_{c}$ superconducting (HTS) thin film. The array antenna has single-feed circularly polarization and a resonance frequency of 11.85 GHz fur satellite communication system. To fabricate this antenna $YBa_2$$Cu_3$$O_{7-x}$(YBCO) superconducting thin films were deposited using rf-magnetron sputtering technique. Sequential rotation technique based on radiation elements($0^{\circ}$ , $90^{\circ}$, 1$80^{\circ}$, $270^{\circ}$ phase delay) was utilized to achieve circularly polarization. Simulated and measured results, the analysis on resonant frequency(fr), return loss, and bandwidth are presented. The results show that 10 dB return loss bandwidth of the array antenna is 11.04 GHz~12.59 GHz (13.15%) and 3dB axial ratio bandwidth is 11.42~12.52 GHz (9.2%).).).

  • PDF

A Novel Method for Measurements of the Penetration Depth of $MgB_2$ Superconductor Films by Using Sapphire Resonators with Short-Circuited Parallel Plates (Short-Circuited 평행판 사파이어 공진기를 이용한 $MgB_2$ 초전도체 박막의 침투깊이 측정법)

  • Jung, Ho-Sang;Lee, J.H.;Cho, Y.H.;Seong, W.K.;Lee, N.H.;Kang, W.N.;Lee, Sang-Young
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.116-122
    • /
    • 2009
  • We introduce a measurement method that enables to measure the penetration depth($\lambda$) of superconductor films by using a short-ended parallel plate sapphire resonator. Variations in the $\lambda$ of $MgB_2$ films could be measured down to the lowest temperature using a sapphire resonator with a $YBa_2Cu_3O_{7-x}$ film at the bottom. A model equation of $\lambda=\lambda_0[1-(T/T_c)^{\tau}]^{-1/2}$ for $MgB_2$ films appeared to describe the observed variations of the resonant frequency of the sapphire resonator with temperature, with $\lambda_0,\;\tau$, and $T_C$ used as the fitting parameters.

  • PDF

Features and Properties of $YBa_2$$Cu_3$$O_{7-x}$ Films Grown on SrTi$O_3$ by High Frequency PLD

  • Shi, D.Q.;Ko, R.K.;Song, K.J.;Chung, J.K.;Choi, S.J.;Park, Y.M.;Shin, K.C.;Yoo, S.I.;Park, C.
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.75-79
    • /
    • 2003
  • YBCO films were deposited with various thicknesses from 100nm to 1.6$\mu\textrm{m}$ on single crystal $SrTiO_3$ substrates by pulsed laser deposition (PLD). The effects of different deposition conditions, especially different deposition rates by means of changing the pulsed laser frequency up to 200Hz, on the J$_{c}$ value were studied. For YBCO film with the thickness of 200nm, the $J_{c}$ value of $2.1MA/\textrm{cm}^2$ has been achieved under the high deposition rate of 3.2nm/s (190nm/min). The $J_{c}$ can be maintained greater than $1M/\textrm{cm}^2$ with the thickness less than 1$\mu\textrm{m}$. The X-ray analysis was used to examine the texture, crystallization and surface quality. The SEM was employed to analyze the surface of YBCO, and it was shown the surface of YBCO film became rougher with increasing the thickness. There were many large singular outgrowths and networks of outgrowths on the surface of YBCO films which lowered the density of thick YBCO film. The outgrowth network was probably the a-axis YBCO corresponding to XRD $\theta$-2$\theta$scan and $\chi$-scan which were used to characterize a-axis orientation of YBCO film. The reason for J$_{c}$ declining with increasing the thickness was studied and discussed.sed.

  • PDF

Fabrication of YSZ buffer layer for YBCO coated conductor by MOCVD method (MOCVD법에 의한 YBCO coated conductor용 YSZ 완충층 제작)

  • 선종원;김형섭;정충환;전병혁;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.129-132
    • /
    • 2003
  • Yttria stabilized zirconia (YSZ) buffer layers were deposited by a metal organic chemical vapor deposition (MOCVD) technique using single liquid source for the application of YBa$_2$Cu$_3$$O_{7-x}$ (YBCO) coated conductor. Y:Zr mole ratio was 0.2:0.8, and tetrahydrofuran (THF) was used as a solvent. The (100) single crystal MgO substrate was used for searching deposition condition. Bi-axially oriented CeO$_2$ and NiO films were fabricated on {100}〈001〉 Ni substrate by the same method and used as templates. At a constant working pressure of 10 Torr, the deposition temperatures (660~80$0^{\circ}C$) and oxygen flow rates (100~500 sccm) were changed to find the optimum deposition condition. The best (100) oriented YSZ film on MgO was obtained at 74$0^{\circ}C$ and $O_2$ flow rate of 300 sccm. For YSZ buffer layer with this deposition condition on CeO$_2$/Ni template, full width half maximum (FWHM) values of the in-plane and out-of-plane alignments were 10.6$^{\circ}$ and 9.8$^{\circ}$, respectively. The SEM image of YSZ film on CeO$_2$/Ni showed surface morphologies without microcrack.k.

  • PDF

Change of crystallization and properties of YBCO thin film by phase transition of $CeO_2$ ($CeO_2$의 상전이에 따른 YBCO 박막의 결정성 및 특성의 변화)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1590-1592
    • /
    • 1999
  • We have fabricated good quality superconducting $YBa_2Cu_3O_{7-{\delta}}$ thin films on Hastelloy(Ni-Cr-Mo alloys) with $CeO_2$ buffer layers by in-situ pulsed laser deposition in a multi-target processing chamber. Using one of electrical properties of YBCO superconducting which the resistance approaches to zero dramatically on transition temperature, we have researched to make power transmission line, we have deposited YBCO thin film on flexible metallic substrate. However, it is difficult to make films on flexible metallic substrates due to both interdiffusion problem between metallic substrate and superconducting layer and non-crystallization of YBCO on amorphous substrate. From early research, two ways-using textured metallic substrate and buffer layer-were proposed to overcome theses difficulties. We have chosen $CeO_2$ as a buffer layer which has cubic structure of $5.41{\AA}$ lattice parameter and only 0.2% of lattice mismatch with $3.82{\AA}$ of a-axis lattice parameter of YBCO on (110) direction of $CeO_2$. In order to enhance the crystallization of YBCO films on metallic substrates we deposited $CeO_2$ buffer layers at varying temperature $700^{\circ}C$ to $800^{\circ}C$ and $O_2$ pressure. By X-ray diffraction, we found that each domination of (200) and (111) orientations were strongly relied upon the deposition temperature in $CeO_2$ layer and the change of the domination of orientation affects the crystallization of YBCO upper layer.

  • PDF

Microwave Properties of High Tc Superconducting Microstrip Antenna with Temperature Dependence (고온초전도 마이크로스트립 안테나의 온도 종속 초고주파 특성)

  • Chung, Dong-Chul;Choi, Myung-Ho;Kang, Hyeong-Gon;Lim, Sung-Hun;Han, Byoung-Sung
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.124-128
    • /
    • 1999
  • We report microwave properties of high-T$_c$ superconducting (HTS) microstrip antennas without impedance matching circuits, where the impedance mismatching is obvious under the critical temperature (T$_c$). The superconducting thin films used in this report were YBa$_2Cu_3O_{7-x}$ (YBCO) films deposited on MgO substrates produced by pulse laser deposition (PLD) technique. At around T$_c$, 86 K the reflection coefficient rapidly drops, and the standing wave ratio (SWR) becomes almost unity, and the characteristic impedance based on the Smith chart is nearly 50 ${\Omega}$. The reflection coefficient and the SWR of the HTS microstrip antenna were - 62.52 dB and 1.0015, respectively, at the resonant frequency of 11.812 CHz at 86 K.

  • PDF