• Title/Summary/Keyword: $WO_3$-$SnO_2$

Search Result 39, Processing Time 0.023 seconds

Characteristics of CuO doped WO3-SnO2 Thick Film Gas Sensors (CuO가 첨가된 WO3-SnO2 후막 가스센서 특성 연구)

  • Lee, Don-Kyu;Shin, Deuck-Jin;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.956-960
    • /
    • 2010
  • CuO doped $WO_3-SnO_2$ thick film gas sensors were fabricated by screen printing method on alumina substrates and heat-treated at $350^{\circ}C$ in air. The effects of mixing ratio of $WO_3$ with $SnO_2$ on the structural and morphological properties of $WO_3-SnO_2$ were investigated X-ray diffraction and Scanning Electron Microscope. The structural properties of the $WO_3-SnO_2$:CuO thick film by XRD showed that the monoclinic of $WO_3$ and the tetragonal of $SnO_2$ phase were mixed. Nano CuO was coated on the $WO_3-SnO_2$ surface and then the surface of $WO_3$ was coated with $SnO_2$ particles with $1\sim1.5{\mu}m$ in diameters, as confirmed form the SEM image. The sensitivity of the $WO_3-SnO_2$:CuO sensor to 2000 ppm $CO_2$ gas and 50 ppm $H_2S$ gas for the various ratio of $WO_3$ and $SnO_2$ was investigated. The 4 wt% CuO doped $WO_3-SnO_2$(75:25) tkick films showed the highest sensitivity to $CO_2$ gas and $H_2S$ gas.

The Electrical and CO Gas Sensing Properties of SnO$_2$-WO$_3$Composite Ceramics (SnO$_2$-WO$_3$복합체의 전기적특성과 일산화탄소 가스 감응특성)

  • 김태원;정승우;최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.347-349
    • /
    • 1997
  • In order to investigate CO sensing property of a SnO$_2$-WO$_3$composite ceramic. we prepared pure SnO$_2$and WO$_3$added SnO$_2$compostie ceramics. Using XRD and SEM, a phase analysis and microstructure were investigated. The resistances as a function of gas atmosphere were measured by High Voltage Measure/source Unit. The measured 1000ppm CO gas sensitivity of SnO$_2$-WO$_3$composite ceramics were smaller than that of pure SnO$_2$.

  • PDF

Improvement of Long-term Stability in $SnO_2$ Based Gas Sensor for Monitoring Offensive Odor

  • Park, Jong-Hun;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.304-308
    • /
    • 2000
  • WO$_3$/SnO$_2$ceramics has been suggested as an effective sensing material for monitoring offensive odor or pollutant gases. This work was focussed on improving long-term stability, which has been a principal problem generally taking place in SnO$_2$semiconductor gas sensor. Miniaturized thick film gas sensors were fabricated by screen printing technique. Two types of sensor materials, W doped SnO$_2$and WO$_3$mixed SnO$_2$, were comparatively investigated on those long-term stability and sensitivites to several gases. Small amount of W doping(0.1 mol%) into SnO$_2$largely improved the long-term stability. The W(0.1 mol%) doped SnO$_2$gas sensor had higher sensitivities to both acetone and alcohol compared with WO$_3$(5 wt%) mixed SnO$_2$gas sensor. On the contrary, WO$_3$(5 wt%) mixed SnO$_2$gas sensor showed more superior sensitivity to cigarette smoke due to larger W content.

  • PDF

Gas Sensing Characteristics of WO3-Doped SnO2 Thin Films Prepared by Solution Deposition Method (용액적하법으로 제조된 WO3 첨가 SnO2 박막의 가스감응 특성)

  • Choi, Joong-Ki;Cho, Pyeong-Seok;Lee, Jong-Heun
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.193-198
    • /
    • 2008
  • $WO_3$-doped $SnO_2$ thin films were prepared in a solution-deposition method and their gas-sensing characteristics were investigated. The doping of $WO_3$ to $SnO_2$ increased the response ($R_a/R_g,\;R_a$: resistance in air, $R_g$: resistance in gas) to $H_2$ substantially. Moreover, the $R_a/R_g$ value of 10 ppm CO increased to 5.65, whereas that of $NO_2$ did not change by a significant amount. The enhanced response to $H_2$ and the selective detection of CO in the presence of $NO_2$ were explained in relation to the change in the surface reaction by the addition of $WO_3$. The $WO_3$-doped $SnO_2$ sensor can be used with the application of a $H_2$ sensor for vehicles that utilize fuel cells and as an air quality sensor to detect CO-containing exhaust gases emitted from gasoline engines.

Heterogeneous Porous WO3@SnO2 Nanofibers as Gas Sensing Layers for Chemiresistive Sensory Devices

  • Bulemo, Peresi Majura;Lee, Jiyoung;Kim, Il-Doo
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.345-351
    • /
    • 2018
  • We employed an unprecedented technique to synthesize porous $WO_3@SnO_2$ nanofibers exhibiting core-shell and fiber-in-tube configurations. Firstly, 2-methylimidazole was uniformly incorporated in as-spun nanofibers containing ammonium metatungstate hydrate and the sacrificial polymer (polyacrylonitrile). Secondly, the 2-methylimidazole on the surfaces of nanofibers was complexed with tin(II) chloride ($SnCl_2$) via simple impregnation of the as-spun nanofibers in ethanol containing tin(II) chloride dihydrate ($SnCl_2{\cdot}2H_2O$). The presence of vacant p-orbitals in tin (Sn) and the nucleophilic nitrogen on the imidazole ring allowed for the reaction between $SnCl_2$ and 2-methylimidazole, forming adducts on the surfaces of the as-spun nanofibers. The calcination of these nanofibers resulted in porous $WO_3@SnO_2$ nanofibers with a higher surface area ($55.3m^2{\cdot}g^{-1}$) and a better response to 1-5 ppm of acetone than pristine $SnO_2$ NFs synthesized using a similar method. An improved response to acetone was achieved upon functionalization of the $WO_3@SnO_2$ nanofibers with catalytic palladium nanoparticles. This work demonstrates the potential application of $WO_3@SnO_2$ nanofibers as sensing layers for chemiresistive sensory devices for the detection of acetone in exhaled breath.

Highly Ordered Mesoporous Metal Oxides as Catalysts for Dehydrogenation of Cyclohexanol (메조기공을 갖는 다양한 금속 산화물 촉매를 이용한 사이클로헥사놀의 탈수소화 반응)

  • Lee, Eunok;Jin, Mingshi;Kim, Ji Man
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.518-522
    • /
    • 2013
  • Cyclohexanone is important intermediate for the manufacture of caprolactam which is monomer of nylron. Cyclohexanone is generally produced by dehydrogenation reaction of cyclohexanol. In this study, highly mesoporous metal oxides such as meso-$WO_3$, meso-$TiO_2$, meso-$Fe_2O_3$, meso-CuO, meso-$SnO_2$ and meso-NiO were synthesized using mesoporous silica KIT-6 as a hard template via nano-replication method for dehydrogenation of cyclohexanol. The overall conversion of cyclohexanol followed a general order: meso-$WO_3$ >> meso-$Fe_2O_3$ > meso-$SnO_2$ > meso-$TiO_2$ > meso-NiO > meso-CuO. In particular, meso-$WO_3$ significantly showed higher activity than the other mesoporous metal oxides. Therefore, the meso-$WO_3$ has wide range of application possibilities for dehydrogenation of cyclohexanol.

Fabrication and NOx Sensing Characteristics of $WO_{3}$ Based Thick Film Devices Doped with $TiO_{2}$ and Noble Metals ($TiO_{2}$와 귀금속을 첨가한 $WO_{3}$ 후막 센서의 제조 및 NOx 감응 특성)

  • Lee, Dae-Sik;Han, Sang-Do;Son, Young-Mok;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.274-279
    • /
    • 1997
  • NOx sensors using tungsten oxide films as a base material were prepared and their electrical and sensing characteristics have been investigated. The $WO_{3}$ thick films doped with $SnO_{2}$ or $TiO_{2}$ showed higher sensitivity and better sorption characteristics to NOx gas than the pure $WO_{3}$ films material in air at operating temperature of $400^{\circ}C$. By addition of noble catalysts, such as Ru or Au, to the $TiO_{2}-WO_{3}$ thick films, their sensitivity, recovery and selectivity to NOx gas were found to be more enhanced.

  • PDF

$NO_{2}$ Sensing Properties of Oxide Semiconductor Thick Films (산화물 반도체형 후막 가스 센서의 이산화질소 감지 특성)

  • Kim, Seung-Ryeol;Yun, Dong Hyun;Hong, Hyung-Ki;Kwon, Chul-Han;Lee, Kyu-Chung
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.451-457
    • /
    • 1997
  • The thick films of oxide semiconductors such as $WO_{3}$, $SnO_{2}$ and ZnO for the $NO_{2}$ detection of sub-ppm range have been prepared and their characteristics were investigated. It is showed that the optimum operating temperatures of the sensors are $300^{\circ}C$ and $220{\sim}260^{\circ}C$ for $WO_{3}$-based and $SnO_{2}$-based thick films, and ZnO-based thick films, respectively. Since the resistance of ZnO-based thick films are extremely high($>10^{6}{\Omega}$), the signal to noise ratio was comparatively low. In order to determine the selectivity, the films are exposed to the interfering gases such as ozone, ammonia, methane and the mixture of carbon monoxide and propane. $WO_{3}$-ZnO(3 wt.%) and $SnO_{2}-WO_{3}$(3 wt.%) thick film sensors show high sensitivity, good selectivity, excellent reproducibility and the linearity of $NO_{2}$ concentration versus sensor resistance. The preliminary results clearly demonstrated that the sensor can be successfully applied for the detection of $NO_{2}$ in sub-ppm range.

  • PDF