• Title/Summary/Keyword: $V_E$ Spectrum

Search Result 318, Processing Time 0.026 seconds

PL Study on the ZnO Thin Film with Temperatures (온도 변화에 따른 ZnO 박막에 대한 PL 연구)

  • Cho, Jaewon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.83-86
    • /
    • 2013
  • The optical properties of ZnO thin film have been studied using photoluminescence(PL) spectroscopy with the change of sample temperatures from 10 K to 290 K. The spectrum at 10 K showed the characteristic emission lines of ZnO which were as follows: free exciton(FX) at 3.369 eV, neutral donor-bound exciton($D^0X$) at 3.360 eV, two electron satellite(TES) at 3.332 eV, $D^0X$-1LO at 3.289 eV, and donor-acceptor pair(DAP) transiton at 3.217 eV. From the spectral evolution with temperatures, two features could be identified as temperature went higher: (1) the bound excitons changed gradually into free excitons, (2) DAP turned into free electron-acceptor transition(e,$A^0$). The PL intensity of free exciton increased with the increase of temperatures, which was accompanied by the decrease of the intensity of bound excitions and bound excition-related transitons such as TES and $D^0X$-1LO. At 80 K DAP transition disappeared, while (e,$A^0$) transition started to appear at 30 K.

A Study on the Mechanism of Photoluminescence in Poly(3-hexylthiophene) (Poly(3-hexylthiophene)의 PL 발광 메카니즘에 관한 연구)

  • 김주승;서부완;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.133-138
    • /
    • 2001
  • We studied the optical properties of poly(3-hexylthiophene) for applying to the emitting material of organic electro luminescent device. The infrared spectrum and NMR of synthesized polymer gave good evidence for the conjugation of 3-hexylthiophene monomer unit. We confirmed that poly(3-hexylthiophene) contains the HT(head-to-tail)-HT(head-to-Tail) linkage larger than 65% based on NMR analysis. FTIR and raman spectroscopy show that poly(3-hexylthiophene) has two main vibration levels which have an energy about 0.18eV and 0.36eV. Electronic absorption spectra shifted to the shorter wavelength with increasing temperature, which is related to a conformational transition of the polymer. Photoluminescence spectrum generated at low temperature(10K) is separated at 669nm, 733nm and 812nm that it's because of phonon energy generated from the lattice vibration.

  • PDF

Emitting characteristics of poly(3-octylthiophene) electroluminescent devices (Poly(3-octylthiophene) 전계발광소자의 발광특성)

  • Seo, Bu-Wan;Kim, Ju-Seung;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.131-134
    • /
    • 2000
  • Electroluminescent[EL] from conjugated polymers has recently received great attention because polymer light-emitting diodes[LEDs] clearly have potential for applications such as large-area displays. The operation of polymer LEDs is based on double injection of electrons and holes from the electrodes, followed by formation of excitons whose radiative decay results in light emission at wavelength characteristic to the material In this paper, we fabricated the single layer EL device using poly(3-octylthiophene)[P3OT] as emitting material. The orange-red light was clearly visible in a dark room Maximum peak wavelength of EL spectrum saw at 640nm in accordance with photon energy 1.9eV. And we know that ionization energy of P3OT is 4.7eV from the cyclic voltammetry.

  • PDF

Construction and performance evaluation of a medium energy ion scattering spectroscopy system (중 에너지 이온산란 분광장치의 제작 및 성능 평가)

  • 김현경;문대원;김영필;이재철;강희재
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.97-102
    • /
    • 1997
  • A medium energy ion scattering spectroscopy(ME1S) system has been developed and tested.In the MEIS system a toroidal electrostatic energy analyzer(TEA) and a two dimensional position sensitivedetector(PSD) were used. The energy resolution of MEIS system was estimated to be less than $4\times 10^{-3}$ and the overall angular resolution was less than 0.3". From the MEIS spectrum of $Ta_2O_5$(300 $\AA$)/ onSi analyzedousing 60 keV $H^+$, the energy loss factor(S.1 and depth resolution were estimated to he 42 eV/$\AA$ and 9.7 $\AA$, respectively. Also Si(100) surface was analyzed using the MEIS system. A random MElSspectrum was obtained from thc Si(100) covered with native oxide layers. At the double alignment condition, MElS spectrum showed ;i Si surface peak, a oxygen peak and a carbon peak.nd a carbon peak.

  • PDF

A Measurement and Analysis of Thermoluminescence Spectra of LaAlO3 (LaAlO3에 대한 열자극발광 스펙트럼의 광학적 분석)

  • Lee, J.I.;Moon, J.H.;Kim, D.H.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.141-146
    • /
    • 1999
  • We measured and analyzed thermoluminescence spectra of $LaAlO_3$, single crystal by 3 dimensional data for temperature, wavelength and luminescence intensity. $LaAlO_3$, has used as the substrates of YBCO(superconductor) or semiconductors. We could determined the energy of recombination center, that is impossible through analysis of glow curve data. We could obtained the energy through analysis of the spectrum data at peak temperature by Franck-Condon model. The total glow curve was deconvoluted to three glow curves by curve fitting method. The activation energies were 0.54eV, 0.91eV and 1.02eV respectively. The energies of recombination centers were determined with 2.04eV and 2.75eV from the analysis of luminescence intensity data for wavelength.

  • PDF

Fabrication of Semiconductor Devices and Its Characteristics for $MgGa_{2-x}In_xSe_4$ Single Crystals ($MgGa_{2-x}In_xSe_4$ 단결정을 이용한 광전반도체소자 제작과 그 특성 연구)

  • 김형곤;김화택
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.1
    • /
    • pp.65-72
    • /
    • 1993
  • MgGa2-xInxSe4 single crystal을 bridgman technique로 성장시켰다. 성장된 단결정은 rhombohedral 구조를 가지고 있었으며, lattice constant는 a=3.950~4.070$\AA$, c=38.89~39.50$\AA$으로 주어졌고, 높은 photoconductivity를 가지고 있었다. 이 단결정의 energy gap은 2.20~1.90eV이었고, photoconductivity spectrum에 peak의 energy는 2.31~2.01eV로 주어졌으며, photoconductivity의 time constant는 0.24~0.34sec로 주어졌다.

  • PDF

Photoluminescence and Long-phosphorescent Characteristics of SrAl2O4:Eu2+,Dy3+ Phosphor by Glycine-nitrate Combustion Method (글리신-질산염 연소법으로 합성된 SrAl2O4:Eu2+,Dy3+ 형광체의 발광 및 장잔광 특성)

  • Lee, Young-Ki;Kim, Jung-Yeul;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.364-369
    • /
    • 2010
  • A $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor powder with stuffed tridymite structure was synthesized by glycine-nitrate combustion method. The luminescence, formation process and microstructure of the phosphor powder were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). The XRD patterns show that the as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor was an amorphous phase. However, a crystalline $SrAl_2O_4 $ phase was formed by calcining at $1200^{\circ}C$ for 4h. From the SEM analysis, also, it was found that the as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor was in irregular porous particles of about 50 ${\mu}m$, while the calcined phosphor was aggregated in spherical particles with radius of about 0.5 ${\mu}m$. The emission spectrum of as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor did not appear, due to the amorphous phase. However, the emission spectrum of the calcined phosphor was observed at 520 nm (2.384eV); it showed green emission peaking, in the range of 450~650 nm. The excitation spectrum of the $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor exhibits a maximum peak intensity at 360 nm (3.44eV) in the range of 250~480 nm. After the removal of the pulse Xe-lamp excitation (360 nm), also, the decay time for the emission spectrum was very slow, which shows the excellent longphosphorescent property of the phosphor, although the decay time decreased exponentially.

Wavelength-resolved Thermoluminescence of Chemical-vapor-deposited Diamond Thin Film (화학증착된 다이어몬드 박막의 파장 분해된 열자극발광)

  • Cho, Jung-Gil;Yi, Byong-Yong;Kim, Tae-Kyu
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Diamond thin films were synthesized by a chemical vapor deposition (CVD). Raman spectrum showed the diamond line at 1332 $cm^{-1}$ / and x-ray diffraction pattern exhibited a strong (111) peak of diamond. The scanning electron microscopy analysis showed that the CVD diamond thin film was grown to be unepitaxial crystallites with pyramidal hillocks. A wavelength-resolved thermoluminescence (TL) of the CVD diamond thin film irradiated with X-rays showed one peak at 430 nm around 560 K. The glow curve of the CVD diamond thin film produced one dominant 560-K peak that was caused by first-order kinetics. Its activation energy and the escape frequency were calculated to be 0.92 ~ 1.05 eV and 1.34 $\times$ 10$^{7}$ sec$^{-1}$ , respectively. The emission spectrum at 560 K was split into 1.63-eV, 2.60-eV, and 3.07-eV emission bands which is known to be attribute to silicon-vacancy center, A center, and H3 center, respectively.

  • PDF

Electron-excitation Temperature with the Relative Optical-spectrumIntensity in an Atmospheric-pressure Ar-plasma Jet

  • Han, Gookhee;Cho, Guangsup
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.201-207
    • /
    • 2017
  • An electron-excited temperature ($T_{ex}$) is not determined by the Boltzmann plots only with the spectral data of $4p{\rightarrow}4s$ in an Ar-plasma jet operated with a low frequency of several tens of kHz and the low voltage of a few kV, while $T_{ex}$ can be obtained at least with the presence of a high energy-level transition ($5p{\rightarrow}4s$) in the high-voltage operation of 8 kV. The optical intensities of most spectra that are measured according to the voltage and the measuring position of the plasma column increase or decay exponentially at the same rate as that of the intensity variation; therefore, the excitation temperature is estimated by comparing the relative optical-intensity to that of a high voltage. In the low-voltage range of an Ar-jet operation, the electron-excitation temperature is estimated as being from 0.61 eV to 0.67 eV, and the corresponding radical density of the Ar-4p state is in the order of $10^{10}{\sim}10^{11}cm^{-3}$. The variation of the excitation temperature is almost linear in relation to the operation voltage and the position of the plasma plume, meaning that the variation rates of the electron-excitation temperature are 0.03 eV/kV for the voltage and 0.075 eV/cm along the plasma plume.

Point-defect study from low-temperature photoluminescence of ZnSe layers through the post-annealing in various ambient

  • Lee, Sang-Youl;Hong, Kwang-Joon;Kim, Hae-Jeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.378-378
    • /
    • 2010
  • The ZnSe epilayers were grown on the GaAs substrate by hot wall epitaxy. After the ZnSe epilayers treated in the vacuum-, Zn-, and Se-atmosphere, respectively, the defects of the epilayer were investigated by means of the low, temperature photoluminescence measurement. The dominant peaks at 2.7988 eV and 2.7937 eV obtained from the PL spectrum of the as-grown ZnSe epilayer were found to be consistent with the upper and the lower polariton peak of the exciton, $I_2$ ($D^{\circ}$, X), bounded to the neutral donor associated with the Se-vacancy. This donor-impurity binding energy was calculated to be 25.3 meV. The exciton peak, $I_l^d$, at 2.7812 eV was confirmed to be bound to the neutral acceptor corresponded with the Zn-vacancy.

  • PDF