• Title/Summary/Keyword: $V_E$ 스펙트럼

Search Result 184, Processing Time 0.033 seconds

고효율 태양전지를 위한 ICP-RIE기반 결정질 실리콘 표면 Texturing 공정연구

  • Lee, Myeong-Bok;Lee, Byeong-Chan;Park, Gwang-Muk;Jeong, Ji-Hui;Yun, Gyeong-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.315-315
    • /
    • 2010
  • 결정질 실리콘을 포함하는 태양전지의 광전효율은 표면에 입사되는 태양광의 반사를 제외하면 흡수된 광자에 의해 생성되는 전자-정공쌍의 상대적인 비율인 내부양자효율에 의존하게 된다. 실제 생성된 전자-정공쌍은 기판재료의 결정상태와 전기광학적 물성 등에 의해 일부가 재결합되어 2차적인 광자의 생성이나 열로서 작용하고 최종적으로 전자와 정공이 완전히 분리되고 전극에 포집되어 실질적인 유효전류로 작용한다. 16% 이상의 고효율 결정질 실리콘 태양전지양산이 요구되고 있는 현실에서 광전효율 개선 위해 가장 우선적으로 고려되어야 할 변수는 입력 태양광스펙트럼에 대한 결정질 실리콘 표면반사율을 최소화하여 광흡수를 극대화하는 것이라 할 수 있다. 이의 해결을 위하여 대기와 실리콘표면 사이의 굴절률차이가 크면 클수록 태양광스펙트럼에 대한 결정질 실리콘의 광반사는 증가하기 때문에 상대적으로 낮은 굴절률의 $SiO_x$$SiN_x$와 같은 반사방지막을 광입력 실리콘표면에 증착하여 광반사율 저감공정을 적용하고 있다. 이와 더불어 결정질 실리콘표면을 화학적으로 혹은 플라즈마이온으로 50-100nm 직경의 바늘형 피라미드형상으로 texturing 함으로 광자들의 다중반사 등에 기인하는 광흡수율의 증가를 기대할 수 있기 때문에 태양전지효율 개선에 긍정적인 영향을 미치는 것으로 이해된다. 본 실험에서도 고효율 다결정 실리콘 태양전지 양산공정에 적용 가능한 ICP-RIE기반 결정질 실리콘표면에 대한 texturing 공정기술을 연구하였다. Double Langmuir 플라즈마 진단시스템(DLP2000)을 적용하여 사용한 $SF_6$$O_2$ 개스유량과 챔버압력, 플라즈마 파워에 따른 이온밀도, 전자온도, 포화이온전류밀도, 플라즈마포텐셜의 공간분포를 모니터링하였고 texturing이 완료된 시료에 대하여 A1.5G 표준태양광스펙트럼의 300-1100nm 파장대역에서 반사율을 측정하여 그 변화를 관찰하였다. 본 연구에서 얻어진 결과를 간략히 정리하면 Si texturing에 가장 적합한 플라즈마파워는 100W, $SF_6/O_2$ 혼합비는 18:22, 챔버압력은 30mtorr 등이고 이에 상응하는 플라즈마의 이온밀도는 $2{\sim}3{\times}10^8\;ions/cm^3$, 전자온도는 14~15eV, 포화전류밀도는 $0.014{\sim}0.015mA/cm^2$, 플라즈마포텐셜은 38~39V 범위 등이었다. 현재까지 얻어진 최소 평균반사율은 14.2% 였으며 최적의 texturing패턴 플라즈마공정 조건은 이온에 의한 Si표면원자들의 스퍼터링과 화학반응에 의한 증착이 교차하는 플라즈마 에너지 및 밀도 상태인 것으로 해석된다.

  • PDF

Electronic Structure and Si L2,3-edge X-ray Raman Scattering Spectra for SiO2 Polymorphs: Insights from Quantum Chemical Calculations (양자화학계산을 이용한 SiO2 동질이상의 전자 구조와 Si L2,3-edge X-선 라만 산란 스펙트럼 분석)

  • Kim, Yong-Hyun;Yi, Yoo Soo;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The atomic structures of silicate liquids at high pressure provide insights into the transport properties including thermal conductivities or elemental partitioning behavior between rocks and magmas in Earth's interior. Whereas the local electronic structure around silicon may vary with the arrangement of the nearby oxygens, the detailed nature of such relationship remains to be established. Here, we explored the atomic origin of the pressure-induced changes in the electronic structure around silicon by calculating the partial electronic density of states and L3-edge X-ray absorption spectra of SiO2 polymorphs. The result showed that the Si PDOS at the conduction band varies with the crystal structure and local atomic environments. Particularly, d-orbital showed the distinct features at 108 and 130 eV upon the changes in the coordination number of Si. Calculated Si XAS spectra showed features due to the s,d-orbitals at the conduction band and varied similarly with those observed in s,d-orbitals upon changes in the crystal structures. The calculated Si XAS spectrum for α-quartz was analogous to the experimental Si XRS spectrum for SiO2 glass, implying the overall similarities in the local atomic environments around the Si. The edge energies at the center of gravity of XAS spectra were closely related to the Si-O distance, thus showing the systematic changes upon densification. Current results suggest that the Si L2,3-edge XRS, sensitive probe of the Si-O distance, would be useful in unveiling the densification mechanism of silicate glasses and melts at high pressure.

Growth and Characterization of AgGa$Se_2$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한 AgGa$Se_2$ 단결정 박막 성장과 특성)

  • Hong, Gwang-Jun;Lee, Gwan-Gyo;Park, Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.419-426
    • /
    • 2001
  • The stochiometric $AgGaSe_2$ polycrystalline mixture of evaporating materials for the $AgGaSe_2$ single crystal thin film was prepared from horizontal furnace. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal and semi-insulating GaAs(100) wafer were used as source material and substrate for the Hot Wall Epitaxy (HWE) system, respectively. The source and substrate temperature were fixed at$ 630^{\circ}C$ and $420^{\circ}C$, respectively. The thickness of grown single crystal thin films is 2.1$\mu\textrm{m}$. The single crystal thin films were investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of AgGaSe$_2$ single crystal thin films measured from Hall effect by van der Pauw method are $4.89\Times10^{17}$ cm$^{-3}$ , 129cm2/V.s at 293K, respectively. From the Photocurrent spectrum by illumination of perpendicular light on the c-axis of the AgGaSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting $$\Delta$S_{o}$ and the crystal field splitting $\Delta$C$_{r}$, were 0.1762eV and 0.2474eV at 10K, respectively. From the photoluminescence measurement of AgGaSe$_2$ single crystal thin film, we observed free excision (EX) observable only in high quality crystal and neutral bound exciton ($D^{o}$ , X) having very strong peak intensity. And, the full width at half maximum and binding energy of neutral donor bound excition were 8mev and 14.1meV, respectively. By Haynes rule, an activation energy of impurity was 141 meV.ion energy of impurity was 141 meV.

  • PDF

Analysis of Proton Nuclear Reaction-Generated Nuclides for Different Proton Energy (양성자 에너지 변화에 따른 핵반응 생성핵종 분석)

  • Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.819-824
    • /
    • 2019
  • In this study, we proposed a method for identifying isotopes generated from high-energy proton $^{nat}Pb$(p,xn) nuclear reactions through the difference of gamma rays generated through nuclear reactions using different proton energies. The experiment was performed by using a high energy proton generated from a 100 MeV proton linear accelerator of the Korea Atomic Energy Research Institute. Gamma rays generated by various nuclides generated through proton nuclear reactions were measured using a gamma-ray spectroscopy system composed of HPGe detectors. Gamma-ray standard sources were used for accurate energy calibration and efficiency measurements of HPGe gamma-ray detectors. For the proposed method, 100 and 60 MeV proton energy beams were used for the same natural lead samples. This method was found to be very effective in identifying nuclides produced by comparing gamma rays generated from the same sample with each other. The results of this study are expected to be very effective in obtaining other proton nuclear reaction results in the future.

Growth and characterization of GaAs and AlGaAs with MBE growth temperature (MBE 성장온도에 따른 GaAs 및 AlGaAs의 전기광학적 특성)

  • Seung Woong Lee;Hoon Young Cho;Eun Kyu Kim;Suk-Ki Min;Jung Ho Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.11-20
    • /
    • 1994
  • GaAs and AlGaAs epi-layers were grown on semi-insulating (100) GaAs substrate by molecular beam epitaxy (MBE) and their electrical and optical properties have been investigated by several measurements. In undoped GaAs, the p-type GaAs layers with the good surface morphology were obtained under the growth conditions of the substrate temperatures ranging from 570 to $585^{\circ}C$ and the $As_4$/Ga ratios from 17 to 22. In the samples with the growth rates of the ranges of $0.9~1.1 {\mu}m/h$, the impurity concentrations were in the ranges of $1.5{\times}10^{14}~5.6{\times}10^{14}cm^{-3}$ with the Hall mobilities of $590~410cm^2/V-s$. In the Si-doped GaAs, the n-type GaAs layers with low electro trap, only two hole deep levels were observed with uniform doping profiles (<1%). AlGaAs layers with good surface morphology and crystallinity were grown under an optimum condition of the substrate temperature, $600^{\circ}C $. 8 deep level defects were observed between 0.17~0.85eV in undoped AlGaAs layers.

  • PDF

Photoluminescence of $Ga_2S_3$: Er Single Crystals ($Ga_2S_3$: Er 단결정의 Photoluminescence 특성 연구)

  • 진문석;김화택
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.66-71
    • /
    • 1998
  • Two kinds of $Ga_2S_3:Er$ (type A and type B) single crystals were grown by the chemical transport reaction method using iodine as a transport agent. The single crystals were crystallized into a monoclinic structure. The optical energy band gaps were found to 3.375 eV for the $Ga_2S_3:Er$ (type A) single crystal and 3.365 eV fir the $Ga_2S_3:Er$ (type B) single crystal at 13K. When the $Ga_2S_3:Er$ (type A and type B) single crystals were excited by the 325 nm-line of a Cd-He laser, Photoluminescence spectra of the $Ga_2S_3:Er$ (type A) single crystal exhibited blue emission band peaked at 444 nm and green and red emission bands peaked at 518 nm and 690 nm. Pgitikynubescebce soectra if the $Ga_2S_3:Er$ (typeB) single crystal showed green and red emission bands peaked at 513 nm and 695 nm. Sharp emission peaks in the two kinds if $Ga_2S_3:Er$ single crystal were observed near 525 nm, 553 nm, 664 nm, 812 nm, 986 nm, and 1540 nm and analysed as originating from the electron transitions between the energy levels of $Er^{3+}$ ion.

  • PDF

The crystal growth and physical properties of the single crystal $K_2CoCl_4$ ($K_2CoCl_4$ 단결정의 성장과 물리적 성질)

  • 김용근;안호영;정희태;정세영
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.359-365
    • /
    • 1997
  • $K_2CoCl_4$, single crystals were grown by the Czochralski method in Ar atmosphere. The thermal hysteresis of the dielectric constant at $T_c$ was investigated. $K_2CoCl_4$ crystal shows ionic hopping mechanism due to $K^+$ ion and the activation energy is nearly 0.62 eV. Thermal expansions along a-, b-, and c-axis of $K_2CoCl_4$, were measured on heating and the thermal expansion coefficients in each phase were calculated. From the result of the optical absorption measurement, we interpreted the absorption peak as transition energy between the splitted energy levels of the Co ion in the crystal field and it showed the possibility of the application to the optical band filter between 800 nm and 1200 nm.

  • PDF

Determination of Optical Constants of Organic Light-Emitting-Material Alq3 Using Jellison-Modine Dispersion Relation (Jellison Modine 분산식을 이용안 유기발광물질 Alq3의 광학상수 결정)

  • Park, Myung-Hee;Lee, Soon-Il;Koh, Ken-Ha
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.4
    • /
    • pp.267-272
    • /
    • 2005
  • We deposited thin films of organic light-emitting-material $Alq_3$(alumina quinoline) on silicon and slide-glass substrates using thermal evaporation method, and measured spectra of ellipsometry angles ${\Delta}$ and ${\Psi}$ in the photon-energy range of 1.5~5.0 eV using a variable angle spectroscopic ellipsometer. The optical constants, refractive index and extinction coefficient, of $Alq_3$ were determined via the dispersion parameters extracted from the curve-fitting process based on Jellison-Modine dispersion function. The reliability of determined optical constants were verified through the comparison of measured and simulated transmittance curves and the good agreement between simulated absorption-coefficient curves and absorbance spectra measured using a spectrophotometer.

  • PDF

Surface Photovoltage Characterization of In0.49Ga0.51P/GaAs Heterostructures (In0.49Ga0.51P/GaAs 이종접합 구조의 표면 광전압 특성)

  • Kim, Jeong-Hwa;Kim, In-Soo;Bae, In-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.353-359
    • /
    • 2010
  • We report the surface photovoltage (SPV) properties of $In_{0.49}Ga_{0.51}P$/GaAs heterostructure grown by metal-organic chemical vapour deposition (MOCVD). The SPV measurements were studied as a function of modulation beam intensity, modulation frequency and temperature. From a line shape analysis of room temperature derivative surface photovoltage (DSPV) spectrum, the band gap energies for GaAs and $In_{0.49}Ga_{0.51}P$ transitions were 1.400 and 1.893 eV respectively. The surface photovoltage (SPV) increases with increasing the light intensity and temperature, whereas the SPV decreases with increasing the modulation frequency. From the temperature variation of the energy gaps, we have analysis by both Varshni and Bose-Einstein type expressions.

The Structural and Optical Properties of ZnO : $Al_{2}O_{3}$ Compound by Reaction Sintering (Reaction Sintering에 의한 ZnO : $Al_{2}O_{3}$ 합성물의 구조 및 광학적 특성)

  • Kang, Byeong-Mo;Park, Gye-Choon;Yoo, Yong-Tek
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.218-224
    • /
    • 1998
  • 2nO and $Al_{2}O_{3}$ powder were weighed in 1 : 1 mole ratio and ball-milled in ethanol for 3 h. Dried mixture were pressed and then sintered at $900^{\circ}C{\sim}1200^{\circ}C$ for 3 h in vacuum($3{\times}10^{-5}$ Torr). According to XRD, remnant ZnO and $Al_{2}O_{3}$ not converted to $ZnAl_{2}O_{4}$ were observed up to $1100^{\circ}C$, which were completely changed to$ZnAl_{2}O_{4}$ ternary compound at $1200^{\circ}C$. Optical bandgap is calculated at 4.75 eV. With increasing sintering temperature, PL spectrums shifted to shorter wavelengths and are appeared 430nm at $1200^{\circ}C$.

  • PDF