• Title/Summary/Keyword: $V_2O_5$ modification effect

Search Result 15, Processing Time 0.02 seconds

Electrical Conductivity Properties of the Vacuum Forming Packing Materials by Ion Implantation (이온주입에 의한 진공성형 포장재의 전기전도 특성)

  • 이재형;이찬영;길재근
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1055-1061
    • /
    • 2003
  • A study has been made of surface modification of various organic materials by ion implantation to increase the surface electrical properties. The substrate used were PP(polypropylene), PET(polyethylene teraphthalate), ECOP(ethylene copolyester), PS(polystyrene). N$_2$, Ar ion implantation was performed at energies of 40 and 50keV with fluences from 5${\times}$ 10$\^$15/ to 7${\times}$10$\^$16/ ions/$\textrm{cm}^2$ with and without H$_2$O gas environment. Surface resistance decrease of implanted polymers was affected by ion implantation energy, ion species, atmosphere of chamber and kind of polymer. In result, surface conductivity of polymers irradiated with atmosphere gas H$_2$O was 10 times more higher than normal vacuum atmosphere, but after 90 hours, surface conductivity returned to the without H$_2$O gas atmosphere condition caused by aging effect. After vacuum forming, surface resistance value was changed to over 10$\^$16/$\Omega$/$\square$, because creation of surface cracks.

Effects of Surface Defect Distribution of $SiO_x(x{\le}2)$ Plates on Chemical Quenching ($SiO_x(x{\le}2)$ 플레이트의 표면 결함 분포가 화학 소염에 미치는 영향)

  • Kim, Kyu-Tae;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.328-336
    • /
    • 2005
  • Effects of surface defect distribution on flame instability during flame-surface interaction are experimentally investigated. To examine the chemical quenching phenomenon, we prepared thermally grown silicon oxide plates with well-defined defect density. Ion implantation was used to control the number of defects, i.e. oxygen vacancies. In an attempt to preferentially remove the oxygen atoms from silicon dioxide surface, argon ions with low energy level from 3keV to 5keV were irradiated at the incident angle of $60^{\circ}C$. Compositional and structural modification of $SiO_2$ induced by low-energy $Ar^+$ ion irradiation has been characterized by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). The analysis shows that as the ion energy increases, the number of structural defect also increases and non-stoichiometric condition of $SiO_x(x{\le}2)$ plates is enhanced. From the quenching distance measurements, we found out that when the surface temperature is under $300^{\circ}C$, the quenching distance decreases on account of reduced heat loss; as the surface temperature increases over $300^{\circ}C$, however, quenching distance increases despite reduced heat loss effect. Such aberrant behavior is caused by heterogeneous chemical reaction between active radicals and surface defect sites. The higher defect density, the larger quenching distance. This results means that chemical quenching is governed by radical adsorption and can be parameterized by the oxygen vacancy density on the surface.

  • PDF

Chemical Modification of the Human Ether-a-go-go-related gene (HERG) $K^+$ Current by the Amino-Group Reagent Trinitrobenzene Sulfonic Acid

  • Jo Su-Hyun;Choi Se-Young;Yun Ji-Hyun;Koh Young-Sang;Ho Won-Kyung;Lee Chin-O.
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.310-317
    • /
    • 2006
  • We investigated the effects of trinitrobenzene sulfonic acid (TNBS), an amino-group reagent, on the human ether-a-go-go-related gene (HERG) $K^+$ channels expressed in Xenopus oocytes. TNBS neutralizes the positively charged amino-groups of peptide N-terminal and lysine residues. External application of TNBS at 10 mM for 5 min irreversibly shifted the curves for currents at the end of the pulse and tail currents of HERG to a more negative potential and decreased the maximal amplitude of the $I_{tail}$ curve $(I_{tail,max})$. TNBS had little effect on either the activated current-voltage relationship or the reversal potential of HERG current, indicating that TNBS did not change ion selectivity properties. TNBS shifted the time constant curves of both activation and deactivation of the HERG current to a more hyperpolarized potential; TNBS's effect was greater on channel opening than channel closing. External $H^+$ is known to inhibit HERG current by shifting $V_{1/2}$ to the right and decreasing $I_{tail,max}$. TNBS enhanced the blockade of external $H^+$ by exaggerating the effect of $H^+$ on $I_{tail,max}$, not on $V_{1/2}$. Our data provide evidence for the presence of essential amino-groups that are associated with the normal functioning of the HERG channel and evidence that these groups modify the blocking effect of external $H^+$ on the current.

Tailoring Low-field Strain Properties of [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3 Lead-Free Relaxor/Ferroelectric Composites (무연 완화형/정규 강유전체 복합소재 [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3의 저전계 전계유기 변형 특성 연구)

  • Hong, Chang-Hyo;Kang, Jin-Kyu;Jo, Wook;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.342-347
    • /
    • 2016
  • We investigated the effect of $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ (BNKT) modification on the ferroelectric and electric-field-induced strain (EFIS) properties of lead-free $0.97Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3-0.03LaFeO_3$ (BNKTLF) ceramics as a function of BNKT content (x= 0, 0.1, 0.2, 0.3, 0.5, and 1). BNKT-modified BNKTLF powders were synthesized using a conventional solid-state reaction method. As the BNKT content x increased from 0 to 1 the normalized electric-field-induced strain ($S_{max}/E_{max}$) was observed to increase at relatively low fields, i.e., below the poling field. Moreover, BNKTLF-30BNKT showed about 460 pm/V as low as at 3 kV/mm, which is a considerably high value among the lead-free systems reported so far. Consequently, it was confirmed that ceramic-ceramic composite, a mixture of an ergodic relaxor matrix and embedded ferroelectric seeds, is a salient way to make lead-free piezoelectrics practical with enhanced EFIS at low field as well as less hysterical.

Effect of Sintering Temperature on the Micro Strain and Magnetic Properties of Ni-Zn Nanoferrites

  • Venkatesh, D.;Siva Ram Prasad, M.;Rajesh Babu, B.;Ramesh, K.V.;Trinath, K.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.229-240
    • /
    • 2015
  • In this study, nanocrystalline ferrite powders with the composition $Ni_{0.5}Zn_{0.5}Fe_2O_4$ were prepared by the autocombustion method. The obtained powders were sintered at $800^{\circ}C$, $900^{\circ}C$ and $1,000^{\circ}C$ for 4 h in air atmosphere. The as-prepared and the sintered powders were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and magnetization studies. An increase in the crystallite size and a slight decrease in the lattice constant with sintering temperature were observed, whereas microstrain was observed to be negative for all the samples. Two significant absorption bands in the wave number range of the $400cm^{-1}$ to $600cm^{-1}$ have been observed in the FT-IR spectra for all samples which is the distinctive feature of the spinel ferrites. The force constants were found to vary with sintering temperature, suggesting a cation redistribution and modification in the unit cell of the spinel. The M-H loops indicate smaller coercivity, which is the typical nature of the soft ferrites. The observed variation in the saturation magnetization and coercivity with sintering temperature has been attributed to the role of surface, inhomogeneous cation distribution, and increase in the crystallite size.