• Title/Summary/Keyword: $TiO_{2-x}$

Search Result 1,887, Processing Time 0.03 seconds

Emission and Structural Properties of Titanium Oxide Nanoparticles-coated a-plane (11-20) GaN by Spin Coating Method

  • Kim, Ji-Hoon;Son, Ji-Su;Baik, Kwang-Hyeon;Park, Jung-Ho;Hwang, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.146-146
    • /
    • 2011
  • The blue light emitting diode (LED) structure based on non-polar a-plane (11-20) GaN which was coated TiO2 nanoparticles using spin coating method was grown on r-plane (1-102) sapphire substrates to improve light extraction efficiency. We report on the emission and structural properties with temperature dependence of photoluminescence (PL) and x-ray rocking curves (XRC). From PL results at 13 K of undoped GaN samples, basal plane stacking fault (BSF) and near band edge (NBE) emission peak were observed at 3.434 eV and 3.484 eV, respectively. We also found the temperature-induced band-gap shrinkage, which was fitted well with empirical Varshini's equation. The PL intensity of TiO2 nanoparticles ?coated multiple quantum well (MQW) sample is decayed slower than that of no coating sample with increasing temperature. The anisotrophic strain and azimuth angle dependence in the films were shown from XRC results. The full width at half maximum (FWHM) along the GaN [11-20] and [1-100] directions were 564.9 arcsec and 490.8 arcsec, respectively. A small deviation of FWHM values at in-plane direction is attributed to uniform in-plane strain.

  • PDF

Fabrication and NOx Gas Sensing Properties of LaMeO3 (Me = Cr, Co) by Polymeric Precursor Method (Polymeric Precursor법에 의한 LaMeO3 (Me = Cr, Co)의 제조 및 NOx 가스 검지 특성)

  • Lee, Young-Sung;Shimizu, Y.;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.468-475
    • /
    • 2011
  • [ $LaMeO_3$ ](Me = Cr, Co) powders were prepared using the polymeric precursor method. The effects of the chelating agent and the polymeric additive on the synthesis of the $LaMeO_3$ perovskite were studied. The samples were synthesized using ethylene glycol (EG) as the solvent, acetyl acetone (AcAc) as the chelating agent, and polyvinylpyrrolidone (PVP) as the polymer additive. The thermal decomposition behavior of the precursor powder was characterized using a thermal analysis (TG-DTA). The crystallization and particle sizes of the $LaMeO_3$ powders were investigated via powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and particle size analyzer, respectively. The as-prepared precursor primarily has $LaMeO_3$ at the optimum condition, i.e. for a molar ratio of both metal-source (a : a) : EG (80a : 80a) : AcAc (8a) inclusive of 1 wt% PVP. When the as-prepared precursor was calcined at $700^{\circ}C$, only a single phase was observed to correspond with the orthorhombic structure of $LaCrO_3$ and the rhombohedral structure of $LaCoO_3$. A solid-electrolyte impedance-metric sensor device composed of $Li_{1.5}Al_{0.5}Ti_{1.5}(PO_4)_3$ as a transducer and $LaMeO_3$ as a receptor has been systematically investigated for the detection of NOx in the range of 20 to 250 ppm at $400^{\circ}C$. The sensor responses were able to divide the component between resistance and capacitance. The impedance-metric sensor for the NO showed higher sensitivity compared with $NO_2$. The responses of the impedance-metric sensor device showed dependence on each value of the NOx concentration.

The Effects of PZT Ratio and Sr Doping on the Piezoelectric Properties in PZN-PNN-PZT (PZN-PNN-PZT계 압전 조성에서 PZN 함량과 Sr Doping이 압전 특성에 미치는 영향)

  • Choi, Jeoung Sik;Lee, Chang Hyun;Shin, Hyo Soon;Yeo, Dong Hun;Lee, Joon Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.19-23
    • /
    • 2018
  • In a Pb-included piezoelectric composition, $Sr_yPb_{1-y}[(Zn_{1/3}Nb_{2/3})_x-(Ni_{1/3}Nb_{2/3})_{0.2}-(Zr_{0.46}Ti_{0.54})_{0.8-x}]O_3$ was selected in order to attain high piezoelectric properties. According to the PZN ratio (x) and the amount of Sr doping (y), the crystal structure, microstructure and piezoelectric properties were measured and evaluated. In the case of Sr 4 mol% doping, the piezoelectric properties were the highest for a PZN ratio of 0.1. In this condition, the grain size was larger and the intensity was higher. With the PZN ratio fixed and varying the Sr doping, the piezoelectric properties increased until 10 mol% doping and then decreased for over 12 mol% doping. In the case of x=0.1 and y=10 mol%, the best piezoelectric properties were obtained, i.e., $d_{33}=660pC/N$ and $k_p=68.5%$, and these values seem to be related to the grain size and crystal structure.

The Effects of Grain Size on the Degradation Phenomena of PZT Ceramics (입자의 크기가 PZT 세라믹스의 열화현상에 미치는 영향)

  • 정우환;김진호;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 1992
  • The effect of grain size on the time-dependent piezoelectrice degradation of a poled PZT of MPB composition Pb0.988Sr0.012 (Zr0.52Ti0.48)O3 with 2.4 mol% of Nb2O5 was studied, and the degradation mechanism was discussed. Changes in the internal bias field and the internal stress both responsible for the time-dependent degradation of poled PZT were examined by the polarization reveral technique, XRD and Vickers indentation, respectively. The piezoelectric degradation increased with increasing time and grain size, and the internal bias field due to space charge diffusion decreased with increasing grain size of poled PZT. The internal bias field, however, was almost insensitive to the degradation time regardless of the grain size. On the other hand, both the x-ray diffraction peak intensity ratio of (002) to (200) and the fracture behavior including the crack propagation support that the ferroelectric domain rearrangement of larger grain size showed rapid relaxation of the internal stress compared with smaller one, which is thought the origin of the larger piezoelectric degradation in the former. In conclusion, the contribution of space charge diffusion on the piezoelectric degradation of PZT is strongly dependent on both the grain size and the composition. Thus, the relaxation of internal stress due to the ferroelectric domain rearrangement as well as the amount and time-dependence of the internal bias field due to space charge diffusion should be considered simultaneously in the degradation mechanism of PZT.

  • PDF

The Study on the Surface Reaction of $SrBi_{2}Ta_{2}O_{9}$ Film by Magnetically Enhanced Inductively Coupled Plasma (MEICP 식각에 의한 SBT 박막의 표면 반응 연구)

  • Kim, Dong-Pyo;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.4
    • /
    • pp.1-6
    • /
    • 2000
  • Recently, SrBi$_{2}$Ta$_{2}$ $O_{9}$(SBT) and Pb(Zr,Ti) $O_{3}$(PZT) were much attracted as materials of capacitor for ferroelectric random access memory(FRAM) with higher read/ write speed, lower power consumption and nonvolartility. SBT thin film has appeared as the most prominent fatigue free and low operation voltage. To highly integrate FRAM, SBT thin film has to be etched. A lot of papers have been reported over growth of SBT thin film and its characteristics. However, there are few reports about etching SBT thin film owing to difficult of etching ferroelectric materials. SBT thin film was etched in CF$_{4}$Ar plasma using magnetically enhanced inductively coupled plasma (MEICP) system. In order to investigate the chemical reaction on the etched surface of SBT thin films, X-ray Photoelecton spectrosocpy (XPS) and Secondary ion mass spectroscopy(SIMS) was performed.

  • PDF

Evaluation of NOx Reduction Performance by Photocatalytic (TiO2) Coating of Cement Mortar Mixed with Zeolite and Activate Hwangtoh (제올라이트와 활성 황토를 혼입한 시멘트 모르타르의 광촉매(TiO2) 코팅에 따른 NOx 저감성능평가)

  • Park, Jang-Hyun;Kim, Hyeok-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.483-489
    • /
    • 2020
  • Particulate matter is divided into PM10 (particle diameter of 10 ㎛ or less) and PM2.5 (particle diameter of 2.5 ㎛ or less), which are approximately 1/5 of the thickness of the hair. Due to its effect on the human body, lung disease, arteriosclerosis and heart It is known as a carcinogen that causes various diseases such as diseases. It is known that the main cause of such fine dust is nitrogen dioxide (NOx), which is emitted from automobiles in about 57.3% of urban roadsides. Therefore, in this study, as part of the development of functional construction materials to reduce NOx generated from road transport pollutants, comparative evaluation of NOx reduction performance was conducted according to the replacement rate of cement mortar in which cement was replaced with a porous material. In addition, the NOx reduction performance of cement mortar according to the photocatalyst application method and the number of applications was compared an d evaluated. As a result of the experiment, when activated ocher was substituted by 30%, it showed a reduction effect of about 32.7%, showing the best reduction performance.

Recovery of the Vanadium and Tungsten from Spent SCR Catalyst Leach Solutions by Hydrometallurgical Methods (SCR 폐촉매 침출액으로부터 습식제련법에 의한 바나듐, 텅스텐의 회수)

  • Choi, In-Hyeok;Moon, Gyeonghye;Jeon, Jong-Hyuk;Lee, Jin-Young;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.62-68
    • /
    • 2020
  • In new millennium, wide-reaching demands for selective catalytic reduction (SCR) catalyst have been increased gradually in new millennium. SCR catalyst can prevent the NOx emission to protect the environment. In SCR catalyst the main composition of the catalyst is typically TiO2 (70~80%), WO3 (7~10%), V2O5 (~1%) and others. When the SCR catalysts are used up and disposed to landfills, it is problematic that those should exist in the landfill site permanently due to their extremely low degradability. A new advanced technology needs to be developed primarily to protect environment and then recover the valuable metals. Hydrometallurgical techniques such as leaching and liquid-liquid extraction was designed and developed for the spent SCR catalyst processing. In a first stage, V and W selectively leached from spent SCR catalyst, then both the metals were processed by liquid-liquid extraction process. Various commercial extractants such as D2EHPA, PC 88A, TBP, Cyanex 272, Aliquat 336 were tested for selective extraction of title metals. Scrubbing and stripping studies were tested and optimized for vanadium and tungsten extraction and possible separation. 3rd phase studies were optimized by using iso-decanol reagent.

Effect of CH4 Concentration on the Dielectric Properties of SiOC(-H) Film Deposited by PECVD (CH4 농도 변화가 저유전 SiOC(-H) 박막의 유전특성에 미치는 효과)

  • Shin, Dong-Hee;Kim, Jong-Hoon;Lim, Dae-Soon;Kim, Chan-Bae
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.90-94
    • /
    • 2009
  • The development of low-k materials is essential for modern semiconductor processes to reduce the cross-talk, signal delay and capacitance between multiple layers. The effect of the $CH_4$ concentration on the formation of SiOC(-H) films and their dielectric characteristics were investigated. SiOC(-H) thin films were deposited on Si(100)/$SiO_2$/Ti/Pt substrates by plasma-enhanced chemical vapor deposition (PECVD) with $SiH_4$, $CO_2$ and $CH_4$ gas mixtures. After the deposition, the SiOC(-H) thin films were annealed in an Ar atmosphere using rapid thermal annealing (RTA) for 30min. The electrical properties of the SiOC(-H) films were then measured using an impedance analyzer. The dielectric constant decreased as the $CH_4$ concentration of low-k SiOC(-H) thin film increased. The decrease in the dielectric constant was explained in terms of the decrease of the ionic polarization due to the increase of the relative carbon content. The spectrum via Fourier transform infrared (FT-IR) spectroscopy showed a variety of bonding configurations, including Si-O-Si, H-Si-O, Si-$(CH_3)_2$, Si-$CH_3$ and $CH_x$ in the absorbance mode over the range from 650 to $4000\;cm^{-1}$. The results showed that dielectric properties with different $CH_4$ concentrations are closely related to the (Si-$CH_3$)/[(Si-$CH_3$)+(Si-O)] ratio.

PZT thin capacitor characteristics of the using Pt-Ir($Pt_{80}Ir_{20}$)-alloy (Pt-Ir($Pt_{80}Ir_{20}$)-alloy를 이용한 PZT 박막 캐패시터 특성)

  • Jang, Yong-Un;Chang, Jin-Min;Lee, Hyung-Seok;Lee, Sang-Hyun;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.47-52
    • /
    • 2002
  • A processing method is developed for preparing sol-gel derived $Pb(Zr_{1-x}Ti_x)O_3$ (x=0.5) thin films on Pt-Ir($Pt_{80}Ir_{20}$)-alloy substrates. The as-deposited layer was dried on a plate in air at $70^{\circ}C$. And then it was baked at $1500^{\circ}C$, annealed at $450^{\circ}C$ and finally annealed for crystallization at various temperatures ranging from $580^{\circ}C$ to $700^{\circ}C$ for 1hour in a tube furnace. The thickness of the annealed film with three layers was $0.3{\mu}m$. Crystalline properties and surface morphology were examined using X-ray diffractometer (XRD). Electrical properties of the films such as dielectric constant, C-V, leakage current density were measured under different annealing temperature. The PZT thin film which was crystallized at $600^{\circ}C$ for 60minutes showed the best structural and electrical dielectric constant is 577. C-V measurement show that $700^{\circ}C$ sample has window memory volt of 2.5V and good capacitance for bias volts. Leakage current density of every sample show $10^{-8}A/cm^2$ r below and breakdown voltage(Vb) is that 25volts.

  • PDF

Sol-gel Mechanism of Self-patternable PZT Film Starting from Alkoxides Precursors

  • Hwang, Jae-Seob;Kim, Woo-Sik;Park, Hyung-Ho;Kim, Tae-Song
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.385-392
    • /
    • 2003
  • Sol-gel preparation technique using a chemical reaction of metal alkoxides has been widely used for the fabrication of various materials including ceramics. However, its mechanism has been studied till now because a number of chemical ways are possible from various alkoxides and additives. In this study, the mechanism of hydrolysis, condensation, and polymerization of alkoxides were investigated from the fabrication of lead-zirconate-titanate (PbZr$\_$x/Ti$\_$l-x/O$_3$; PZT) thin film that is used as various micro-actuator, transducer, and sensor because of its high electro-mechanical coupling factors and thermal stability. Furthermore, the fabrication process and characteristics of self-patternable PZT film using photosensitive stabilizer were studied in order to resolve the problem of physical damage and properties degradation during dry etching for device fabrication. Using an optimum condition to prepare the self-patternable PZT film, more than 5000 ${\AA}$ thick self-patternable PZT film could be fabricated by three times coating. The PZT film showed 28.4 ${\mu}$c/cm$^2$ of remnant polarization (Pr) and 37.0 kV/cm of coercive field (E$\_$c/).