• Title/Summary/Keyword: $TiO_{2-x}$

Search Result 1,887, Processing Time 0.028 seconds

Simultaneous Improvement of Dimensional Stability and Ionic Conductivity of QPAE/TiO2-x Composite Membranes According to TiO2 Content Control for Anion Exchange Membrane Fuel Cells (음이온교환막 연료전지를 위한 TiO2 함량 조절에 따른 QPAE/TiO2-x 복합막의 치수안정성 및 이온전도도 동시 개선 연구)

  • KIM, SANG HEE;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • A series of QPAE/TiO2-x (x = 1, 4, 7 and 10 wt%) organic/inorganic composite membranes were prepared as electrolyte membranes for alkaline anion exchange membrane fuel cells by controlling the content of inorganic filler with quaternized poly(arylene ether) (QPAE) random copolymer. Among the prepared QPAE/TiO2-x organic/inorganic composite membranes, the highest ionic conductivity was 26.6 mS cm-1 at 30℃ in QPAE/TiO2-7 composite membrane, which was improvement over the ionic conductivity value of 6.4 mS cm-1 (at 30℃) of the pristine QPAE membrane. Furthermore, the water uptake, swelling ratio, ionic exchange capacity, and thermal property of QPAE/TiO2-x composite membranes were improved compared to the pristine QPAE membrane. The results of these studies suggest that the fabricated QPAE/TiO2-x composite membranes have good prospects for alkaline anion exchange membrane fuel cell applications.

Effects of $Y_2O_3$ Addition on the Microstructure and Electrical Property of $TiO_2$-excess $BaTiO_3$

  • Kim, Jong-Han;Han, Young-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1095-1096
    • /
    • 2006
  • When $Y_2O_3$ was added to Ti-excess $BaTiO_3$ ((Ba+Y)/Ti =1), the area occupied by $Y^{3+}$ ion was confirmed by its microstructure development, electrical conductivity behavior and lattice constant. Grain growth inhibition was observed when the content of donor dopant exceeded a critical value ($x{\approx}.0.01$) in $BaTiO_3+x(0.5Y_2O_3+TiO_2)$ system. A donor-doped behavior was observed at various Y contents ($0.2\sim3.0$ mol% Y) when $Y_2O_3$ was added to $TiO_2$-excess $BaTiO_3$. As Y content was increased, (002) and (200) peaks shifted to higher angles and the lattice constant (a and c axis) decreased gradually.

  • PDF

Electric Field-activated Self-propagating Synthesis of ${Ti}_{5}{Si}_{3}$ and ${Ti}_{5}{Si}_{3}-{ZrO}_{2}$ Composites (통전 활성 연소에 의한 ${Ti}_{5}{Si}_{3}$${Ti}_{5}{Si}_{3}-{ZrO}_{2}$복합재료 합성)

  • Son, In-Jin;Go, In-Yong
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.709-715
    • /
    • 1996
  • The influence of an electric field on the combustion synthesis of ${Ti}_{5}{Si}_{3}$-x ${ZrO}_{2)$(0 $\leq$ x $\leq$0.6)was investigated. Composite of X $\geq$0.45 can only be synthesized in the presence of an electric field. Although in the absence of an electri field the system with x = 0.45 and x=0.6 can sustain a nonsteady combustion wave, the reaction is not complete. That is, an unstable wave propagates to the middle of the sample and them becomes extinguished. Wave velocity o the ${Ti}_{5}{Si}_{3}-{ZrO}_{2}$ Composites slightly increases with the imposition of external field across the sample.

  • PDF

Anode Properties of TiO2 Nanotube for Lithium-Ion Batteries (리튬이온전지용 TiO2 나노튜브 음전극 특성)

  • Choi, Min Gyu;Lee, Young-Gi;Kim, Kwang Man
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.283-291
    • /
    • 2010
  • In this review, the studies on the electrochemical properties of $TiO_2$ nanotube as an anode material of lithium-ion battery, which was prepared by an alkaline hydrothermal reaction and anneling process, were investigated andanalyzed in terms of charge-dischage characteristics. Up to date, a maximum discharge capacity of $338mAh\;g^{-1}$(x=1.01) was achieved by the nanotube with $TiO_2(B)$ phase, whereas the theoretical capacity of $TiO_2$ anode was $335mAh\;g^{-1}$(x=1) in the basis of $Li_xTiO_2$ as a product of electrochemical reaction between $TiO_2$ and lithium. This was due to fast lithium transport by a shortened diffusion path provided by controlling the nanostructure of $TiO_2$, because the self-diffusion of lithium was slow in a basis of its activation energy as 0.48 eV. Due to an excellent ion storage capabilities in both the surface and the bulk phase, the $TiO_2$ nanotube could be a promising active material as both an anode of lithium-ion battery and an electrode of capacitor with high-rate performances.

Photocatalytic Oxidation of NOx onCaO/TiO2 (CaO/TiO2에서 NOx의 광촉매 산화반응에 대한 연구)

  • Shin Joong-Hyeok;Lim Woong-Mook;Jun Jin
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.533-538
    • /
    • 2006
  • Removal of $NO_x$ on $CaO/TiO_2$ photocatalyst manufactured by the addition of $Ca(OH)_2$ was measured in relation with the amount of $Ca(OH)_2$ and calcination temperature. In case of pure $TiO_2$, the $NO_x$ removal decreased greatly with the increase of calcination temperature from $500^{\circ}C\;to\;700^{\circ}C$, whereas in the photocatalyst added with $Ca(OH)_2$, the removed amount of $NO_x$ was high and constant regardless of calcination temperature. Considering $NO_x$ removal patterns depending on the amount of $Ca(OH)_2$ added(50, 30, 10wt%), high removal rate showed at the photocatalysts containing less than 30wt% of $Ca(OH)_2$, and it was about 30% higher than that of pure $TiO_2$. From the XRD patterns, it is seen that the addition of $Ca(OH)_2$ contributes to maintaining the anatase structure that is favourable to photocatalysis. It also indicates that the possibility of the formation of calcium titanate($CaTiO_3$) by reacting with $TiO_2$ above $700^{\circ}C$. Apart from the favourable crystalline structure, the addition of $Ca(OH)_2$ helped increase the alkalinity of photocatalyst surface, thus promoting the photooxidation reaction of $NO_x$.

Synthesis of $PbLaTiO_{3}$: Mn powders by hydrothermal method

  • Park, Sun-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.63-67
    • /
    • 2003
  • Synthesis of $PbLaTiO_{3}$ : Mn powders containing La and Mn was carried out using $PbO,\;TiO_{2},\;La_{2}O_{3}\;and\;MnO_{2}$ as starting materials by hydrothermal method. In the synthesis of single phase $PbLaTiO_{3}$ : Mn powder containing La and Mn, the optimal x value corresponding to La substitution was 0.01 which corresponds to $0.99(Pb_{1-x}La_{2x/3}TiO_{3})+0.01MnO_{2}$. The optimal conditions for the preparation of the powder synthesis were 8 M-KOH solvent of hydrothermal solvent, $270^{\circ}C$ of reaction temperature and 24 hrs of run time. It was found that the synthesized powders had spherical morphology with average particle size of 70 nm and specific surface area of $5.5\;m^{2}/g$.

Structural and Microwave Dielectric Properties of the Mg$_{1-x}Sr_xTiO-3$ Ceramics with Sintering Temperature and Sr Mole Ratio (소결온도와 Sr몰비에 따른 Mg$_{1-x}Sr_xTiO-3$ 세라믹스의 구조 및 마이크로파 유전특성)

  • Choi, Eui-Sun;Chung, Jang-Ho;Ryu, Ki-Won;Lee, Young-Hie
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.5
    • /
    • pp.226-231
    • /
    • 2001
  • The $Mg_{1-x}Sr_xTiO_3\;(x=0.02{\sim}0.08)$ ceramics were fabricated by the conventional mixed oxide method. The sintering temperature and time were $1250^{\circ}C{\sim}1350^{\circ}C$, 2hr., respectively. From the X-ray diffraction patterns, it was found that the perovskite $SrTiO_3$ and ilmenite $MgTiO_3$ structures were coexisted in the $Mg_{1-x}Sr_xTiO_3\;(x=0.02{\sim}0.08)$ ceramics. The dielectric constant( ${\epsilon}_r$) was increased with addition of $SrTiO_3$. The temperature coefficient of resonant frequency( ${\tau}_f$) was gradually varied from negative value to the positive value with increasing the $SrTiO_3$. The temperature coefficient of resonant frequency of the $Mg_{1-x}Sr_xTiO_3(x=0.036)$ ceramics was near zero, where the dielectric constant, quality factor, and ${\tau}_f$ were 20.65, 95120 and +1.3ppm/$^{\circ}C$, respectively.

  • PDF

NOx removal of Mn-Cu-TiO2 and V/TiO2 catalysts for the reaction conditions (반응조건에 대한 Mn-Cu-TiO2촉매와 V/TiO2촉매의 탈질 특성)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.713-719
    • /
    • 2016
  • The NOx conversion properties of Mn-Cu-$TiO_2$ and $V_2O_5$/$TiO_2$ catalysts were studied for the selective catalytic reduction (SCR) of NOx with ammonia. The performance of the catalysts was investigated in terms of their $NOx$ conversion activity as a function of the reaction temperature and space velocity. The activity of the Mn-Cu-$TiO_2$ catalyst decreased with increasing reaction temperature and space velocity. However, the activity of the $V_2O_5$/$TiO_2$ catalyst increased with increasing reaction temperature. High activity of the Mn-Cu-$TiO_2$ catalyst was observed at temperatures below $200^{\circ}C$. H2-TPR and XPS analyses were conducted to explain these results. It was found that the activity of the Mn-Cu-$TiO_2$ catalyst was influenced by the thermal shock caused by the change of the initial reaction temperature, whereas the $V_2O_5$/$TiO_2$ catalyst was not affected by the initial reaction temperature. In the case of catalyst C, the $NO_x$ conversion efficiency decreased with increasing space velocity. The decrease in the $NO_x$ conversion efficiency with increasing space velocity was much less for catalyst D than for catalyst C.