• Title/Summary/Keyword: $TiH_2$ hydride

Search Result 33, Processing Time 0.026 seconds

Fabrication, Microstructures and High-Strain-Rate Properties of TiC-Reinforced Titanium Matrix Composites

  • 신현호;박홍래;장순남
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.259-259
    • /
    • 1999
  • TiC ceramic particulate-reinforced titanium matrix composites were fabricated and the resultant densification, microstructure, and static and dynamic mechanical properties were studied. Comparing Ti with TiH₂powders as host materials for TiC ceramic reinforcement by pressureless vacuum sintering, TiH₂-started composites showed better sinterability and resistance to both elastic and plastic deformation than Ti-started ones. When TiH₂and TiH₂-45 vol.%TiC samples were hot pressed, TiH₂matrices transformed to alpha prime Ti and alpha Ti phase, respectively. It is interpreted that the diffusion of an alpha stabilizer carbon from TiC into the matrix is one of the plausible reasons far such a microstructural difference. The 0.2% offset yield strengths of the hot pressed TiH₂and TiH₂-45 vol.%TiC samples were 1008 and 1446 MPa, respectively, in a static compressive mode (strain rate of 1×$10^{-3}$/s). Dynamic compressive strengths of the samples were 1600 and 2060 MPa, respectively, at a strain rate of 4×10³/s.

Disproportionation/Dehydrocoupling of Endocrine Disruptor, Tributyltin Hydride to Polystannanes Using Cp2TiCl2/N-Selectride (Cp' = Cp' = C5H5, Cp; Me-C5H4, Me-Cp; Me5C5, Cp*) Catalyst

  • Park, Jaeyoung;Kim, Seongsim;Lee, Beomgi;Cheong, Hyeonsook;Lee, Ki Bok;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.34-38
    • /
    • 2013
  • Tributyltin hydride ($n-Bu_3SnH$), an endocrine disruptor, was slowly polymerized by the group 4 ${Cp^{\prime}}_2TiCl_2/N$-selectride (Cp' = $C_5H_5$, Cp; $Me-C_5H_4$, Me-Cp; $Me_5C_5$, $Cp^*$) catalyst combination to give two phases of products: one is an insoluble cross-linked solid, polystannane in 3-25% yield as minor product via disproportionation/dehydrocoupling combination process, and the other is an oil, hexabutyldistannane in 65-90% yield as major product via simple dehydrocoupling process. Disproportionation/dehydrocoupling process first produced a low-molecular-weight oligostannane possessing partial backbone Sn-H bonds which then underwent an extensive cross-linking reaction of backbone Sn-H bonds, resulting in the formation of an insoluble polystannane. The disproportionation/dehydrocoupling of a tertiary hydrostannane mediated by early transition metallocene/inorganic hydride is quite unusual and applicable.

Fabrication of Porous Titanium Parts by Direct Laser Melting of Ti-TiH2 Mixing Powder (Ti-TiH2 혼합 분말의 레이저 직접 용융 공정을 이용한 다공성 티타 늄 부품 제조 연구)

  • Yun, H.J.;Seo, D.M.;Woo, Y.Y.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.1
    • /
    • pp.21-26
    • /
    • 2019
  • Direct Laser Melting (DLM) of $Ti-xTiH_2$ (mixing ratio x = 2, 5, 10 wt.%) blended powder is characterized by producing porous titanium parts. When a high energy laser is irradiated on a $Ti-TiH_2$ blended powder, hydrogen gas ($H_2$) is produced by the accompanying decomposition of the $TiH_2$ powder, and acts as a pore-forming and activator. The hydrogen gas trapped in a rapidly solidified molten pool, which generates porosity in the deposited layer. In this study, the effects of a $TiH_2$ mixing ratio and the associated processing parameters on the development of a porous titanium were investigated. It was determined that as the content of $TiH_2$ increases, the resulting porosity density also increases, due to the increase of $H_2$ produced by $TiH_2$. Also, porosity increases as the scan speed increases. As fast solidified melting pools do not provide enough time for $H_2$ to escape, the faster the scan speed, the more the resulting $H_2$ is captured by the process. The results of this study show that the mixing ratio (x) and laser machining parameters can be adjusted to actively generate and control the porosity of the DLM parts.

MicrostructuraL Characteristics During Hydrogen Desorption of Mechanical Milled TiH2 (기계적 합금화된 TiH2의 수소방출에 따른 미세조직 특성)

  • Jung S.;Jung Hyun-Sung;Ahn Jae-Pyoung;Park Jong-Ku
    • Journal of Powder Materials
    • /
    • v.13 no.3 s.56
    • /
    • pp.199-204
    • /
    • 2006
  • We manufactured the metal hydrides of $(Ti_{0.88}Mg_{0.12})H_2$ using a very easy and cheap way that Ti-12%Mg blending powder was mechanically milled with liquid milling media such as isopropyl alcohol ($C_3H_8O$, containing oxygen) and hexane ($C_6H_{14}$, no oxygen) as hydrogen source. The $(Ti_{0.88}Mg_{0.12})H_2$ synthesized in isopropyl alcohol contained the high oxygen of 11.2%, while one in hexane had the low oxygen content of 0.7%. Such a difference of oxygen content affected the dehydriding behavior, phase transformation, and microstructural evolution at high temperature, which was investigated through X-ray diffraction and DSC measurements, and electron microscope observations.

Characteristics of Titanium Carbide Fabricated by Fine Titanium Hydride Powder (Titanium hydride를 이용한 TiC분말의 제조 및 특성)

  • Sung Tek Kyoung;Ahn In-Shup;Bae Sung-Yeal;Jeong Woo Hyun;Park Dong-Kyu;Jung Kwang Chul;Kim You-Young
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.174-178
    • /
    • 2005
  • This paper deals with the fabrication of titanium carbide using fine titanium hydride. The ratio of $TiH_2$ and C (Activated carbon) was 1:1 (mol) and milled in a planetary ball mill at a ball-to-powder weight ratio of 20:1. Thereafter, TGA was performed at $1400^{\circ}C$ to observe change of weight with milling time. Titanium carbide was obtained by using tempering the milled powders at $1100-1500^{\circ}C$. The microstructures of titanium carbide as well as the change of the lattice parameters and particle size have been studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

Fabrication of Fe-TiB2 Composite Powder by High-Energy Milling and Subsequent Reaction Synthesis

  • Khoa, H.X.;Tuan, N.Q.;Lee, Y.H.;Lee, B.H.;Viet, N.H.;Kim, J.S.
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.221-227
    • /
    • 2013
  • $TiB_2$-reinforced iron matrix composite (Fe-$TiB_2$) powder was in-situ fabricated from titanium hydride ($TiH_2$) and iron boride (FeB) powders by the mechanical activation and a subsequent reaction. Phase formation of the composite powder was identified by X-ray diffraction (XRD). The morphology and phase composition were observed and measured by field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. The results showed that $TiB_2$ particles formed in nanoscale were uniformly distributed in Fe matrix. $Fe_2B$ phase existed due to an incomplete reaction of Ti and FeB. Effect of milling process and synthesis temperature on the formation of composite were discussed.

Development of Metal Compound Explosives Using KIO4 and TiH2 (KIO4와 TiH2를 이용한 금속복합화약 개발)

  • Ahn, Gilhwan;Kim, Sangbaek;Kim, Junhyung;Ryu, Byungtae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.58-63
    • /
    • 2020
  • THPP is a type of metallic complex explosive used in initiators, consisting of TiH2 and KClO4. In this case KClO4 includes ClO4- which is a harmful substance that may cause thyroid dysfunction or tumors. In this study KIO4 is applied to a new type of environmentally friendly explosive as a substitute to the conventional KClO4. Tests were carried out to see if KIO4 can be made a successful replacement for KClO4.

A Study on Neutron Shielding Capability Assessment of Metallic Hydride using Cf-252 Neutron Source (Cf-252 중성자 선원을 이용한 수소화금속의 중성자 방사선 차폐능 평가)

  • Yoo, Beong-Gyu;Kim, Keung-Sik;Kim, Yong-Soo
    • Journal of radiological science and technology
    • /
    • v.26 no.3
    • /
    • pp.51-57
    • /
    • 2003
  • Mitigation of fast neutron irradiation damage on reactor vessel and improvement of mechanical integrity are desired for the successful plant life-time extension. In this study, the performance of metallic hydride for this application is reviewed and compared. First, selected prospective metallic hydrides are evaluated by MCNP code and put into the attenuation test using Cf-252 neutron source. Since for the reactor application high moderation and reflection with no absorption are favored, Z factor is introduced for the evaluation. According to the Z value estimation $ZrD_2$ and $TiD_2$ are turned out to be the most favorable fast neutron shielding materials. More thorough evaluation by computer simulation and experimentally, will be followed.

  • PDF

Synthesis of Fe-TiB2 Nanocomposite by a combination of mechanical activation and heat treatment

  • Hyunh, Xuan Khoa;Nguyen, Quoc Tuan;Kim, Ji-Sun;Gang, Tae-Hun;Kim, Jin-Cheon;Gwon, Yeong-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.91.2-91.2
    • /
    • 2012
  • The TiB2-reinforced iron matrix nanocomposite (Fe-TiB2) was in-situ fabricated from titanium hydride (TiH2) and iron boride (FeB) powders by a simple and cost-effective process that combines the mechanical activation (MA) and a subsequent heat treatment (HT). Effect of milling factors and synthesized temperatures on the formation of the nanocomposite were presented and discussed. A differential thermal analyser (DSC-TG) was employed for examination of thermal behavior of MAed powders. Phases of the nanocomposite were confirmed by X-ray diffraction analysis (XRD). The morphologies and microstructure of nanocomposite were investigated by field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Phase composition and distribution were analyzed by electron probe X-ray microanalysis (EPMA). Results showed that TiB2 particles formed in nanoscale were uniformly distributed in alloyed Fe matrix.

  • PDF