• Title/Summary/Keyword: $Ti-Al_2O_3$ powder

Search Result 114, Processing Time 0.023 seconds

Effects of Process Parameters on the Coating Properties of APS TiO2 ioceramic Coatings

  • Kim, Hak-Kwak;Jang, Ju-Woong;Kim, Byoung-Soo;Moon, Ji-Woong;Lee, Deuk-Yong;Lee, Chang-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.123-127
    • /
    • 2003
  • The effects of process parameters on coating formation and coating properties were investigated using a fused and crushed Ti $O_2$powder by the Taguchi method and L$_{9}$(3$^4$) orthogonal array. The Taguchi analysis was conducted through the results of the coating properties affected strongly by plasma spraying parameters and Ti $O_2$powder was sprayed on Ti-6Al-4V alloy substrate. The coating properties were characterized by thickness, microhardness, porosity and surface roughness using optical microscopy, image analyzer and surface roughness tester respectively. An observed optimum condition of plasma spraying process could be found for potential use as a bioceramic coating.

Characteristics of Sintering Densification of Co and Fe+Co Fine Powders (Co와 Fe+Co혼합미분의 소결치밀화 특성)

  • 임태환
    • Journal of Powder Materials
    • /
    • v.3 no.2
    • /
    • pp.97-103
    • /
    • 1996
  • The densification of the compacts of pure Co, Fe+50%.Co and Fe+25% Co sintered under H$_2$ gas or in vacuum was investigated. The effects of AL, Nb, Ti, and V additions on the densification were also studied. The sintered compact of Co was fully-dense when the density of the compact was lower than $Dg^c$. However, above $Dg^{c}$, it was never fully-dense regardless of sintering atmosphere, temperature, and time. The densification of sintered compacts of Fe-50% Co and Fe-25% Co were always incomplete. While the addition of AL made all compacts fully-dense, the addition of Ti was effective for the compacts of Co and Fe-25% Co. V was effective only for the Fe-25% Co. These results tell us that the particle size of Co powder, the amount of Fe, and the amount of additives forming stable oxides play on important role for the complete densification. Therefore it is desirable to reduce or eliminate the equilibrium pressure of H$_{2}$O or CO in isolated pores to obtain a fully-dense sintered compact.

  • PDF

Nucleation and Crystal Growth of $\beta$-eucryptite in a Glass of the Molecular Composition Li2O.Al2O3.2SiO2 (Li2O.Al2O3.2SiO2의 조성을 갖는 유리에서 $\beta$-eucryptite의 핵생성 및 결정성장)

  • 이상현;장수진
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.3
    • /
    • pp.53-59
    • /
    • 1985
  • Nucleation and crystallization of $\beta$-eucryptite in a glass of molecular percentage composition Li2O.Al2O3.2SiO2 are studied. The glasses are made by quenching of the melts from 143$0^{\circ}C$ to room temperature. Heat-treatment for nucleation and crystal growth are caried out at various temperature in the range between 50$0^{\circ}C$ and 80$0^{\circ}C$ with different duration of time. The amounts of crystallization are estimated by the method of x-ray powder diffraction. As the results a time-temperature-transformation relation for crystallization is derived. The maximum rate of crystallization is observed at about 75$0^{\circ}C$ from the T-T-T-curve while the crystallization temperature is detected at 67$0^{\circ}C$ by DTA measurement. The crystallization temperature moved to 62$0^{\circ}C$ by adding 5 weight percents of TiO2 and it moved to 78$0^{\circ}C$ by adding 2 weight percents of V2O5. The crystallization temperature moved to 62$0^{\circ}C$ by adding 5 weight percent of TiO2 it moved to 78$0^{\circ}C$ by adding 2 weight percents of V2O5 The activation energy for crystallization from the pure glass is calculated as 68 Kcal/mol and it varied to 53 Kcal/mol and 110Kcal/mol when 5 weight percents of TiO2 and weight percents of V2O5 are added respectively.

  • PDF

Synthesis and Characterization of Submicrometer Monodispersed Ceramic Powders of Aluminium Titanate-Mullite Composite by Sol-Gel Process

  • Kim, Ik-Jin;Kim, Do-Kyung;Lee, Hyung-Bock;Ko, Young-Shin
    • The Korean Journal of Ceramics
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1995
  • Submicrometer, monosized ceramic powder of $Al_2TiO_5$$Al_2O_3$ ethanolic solutions. All particles produced by sol-gel-process were amprphous, monodispersed and with a narrow particle-size distribution. Compacts fired above $1300^{\circ}C$ formed aluminium titanate. Mullite formed first at $1480^{\circ}C$. After decomposition test at $1100^{\circ}C$, and cyclic thermal decomposition test at 750-1400-$750^{\circ}C$ for 100hrs., aluminium titanate was well stablized by composition with mullite.

  • PDF

Mechanical Properties of the Pressureless Sintered Al2O3-SiC Composites(2) : Dispersion Effects of SiC Whisker (상압소결한 Al2O3-SiC계 소결체의 기계적 성질(2) : SiC Whisker의 분산효과)

  • 김경수;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.6
    • /
    • pp.704-712
    • /
    • 1988
  • In order to investigate the effect of the second phase on Al2O3 matrix, SiC whisker was dispersed in Al2O3 matrix as a second phase over the content range of 5vol% to 20vol%. To this mixture, Y2O3 or TiO2 powder was added as a sintering additive before isostatically pressing and pressureless sintering at 1800-190$0^{\circ}C$ for 90min in N2 atmosphere. With increasing SiC whisker content, relative densities of composites were decreased and the grain growth of Al2O3 was restricted. When Y2O3 was added as a sintering aid the sintering temperature was 180$0^{\circ}C$, the maximum values of flexural strength, hardness and fracture toughness were 537MPa, 12.1GPa, 3.7MPa.m1/2, respectively. However, when the sintering temperature was elevated to 190$0^{\circ}C$, maximum values of flexural strength, hardness and fracture toughness were 453MPa, 17.5GPa, 4.9MPa.m1/2, respectively. Improved mechanical properties are assumed to be attributed to the crack deflection by the second phase SiC whisker and whisker pullout mechanism.

  • PDF

Glass-Ceramics of $Li_2O-Al_2O_3-SiO_2$ System Produced by Sintering (소결법에 의한 $Li_2O-Al_2O_3-SiO_2$계 결정화 유리의 제조)

  • 연석주
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.2
    • /
    • pp.176-184
    • /
    • 1993
  • The glasses, which the $\beta$-spodumene as the principal crystalline phase could be precipitated, were melted by adding >, $P_2O_5, TiO_2, ZrO_2 in the Li_2O-Al_2O_3-SiO_2$ system. In order to achieve the glass-ceramic body of near-theoritical density by sintering method, the optimum condition of heat treatment, the effect of glass powder size and the properties were investigated by DTA, XRD, bulk density, thermal expansion and SEM. Addition of $P_20_5$ imProved the tendency of sintering and the sample with 9wt% $P_20_5$ content was the most dense OOdy by sintering method. The optimum condition of heat treatmemt was sintered for densitification at $740^{\circ}C$ and crystallized at $950^{\circ}C$. In the optimum condition, the relative density was above 90% and the thermal expansion was negative about $-1{\times}10^{-7}/^{\circ}C$.

  • PDF

Properties of Pressureless Sintered SiC-$TiB_2$ Electroconductive Composites (무가압 소결법에 의한 SiC-$TiB_2$계 도전성 복합체의 특성)

  • Park, Mi-Lim;Ju, Jin-Young;Shin, Yong-Deok;So, Byung-Moon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.118-122
    • /
    • 2001
  • The ${\beta}-SiC+TiB_2$ ceramic electroconductive composites were pressureless-sintered and annealed by adding 12wt% $Al_2O_3+Y_2O_3$(6 : 4wt%) powder as a function of sintering temperature. The relative density is over 78.83% of the theoretical density and increased with increasing sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), $TiB_2$, $Al_5Y_2O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 140 MPa for composites sintered at $1900^{\circ}C$. The vicker's hardness increased with increasing sintering temperature and showed the highest of 4.07 GPa at $1900^{\circ}C$. Owing to YAG, the fracture toughness showed the highest of 4.07 $MPa{\cdot}m^{1/2}$ for composites at $1900^{\circ}C$. The electrical resistivity was measured by the Pauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).

  • PDF

Liquid Phase Sintered SiC-30 wt% TiC Composites by Spark Plasma Sintering (스파크 플라즈마 소결에 의한 액상소결 SiC-30 wt% TiC 복합체)

  • 조경식;이광순;송진호;김진영;송규호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.751-757
    • /
    • 2003
  • Rapid densification of a SiC-30 wt% TiC powder with additive 10 wt% A1$_2$O$_3$-Y$_2$O$_3$-CaO was conducted by Spark Plasma Sintering(SPS). The fully-densified materials can be obtain through the SPS process with very fast heating rate and short holding time. In the present work, the heating rate and applied pressure were kept to be $100^{\circ}C$/min and 40 MPa, while sintering temperature varied from $1600^{\circ}C$ to $1800^{\circ}C$ for 10 min. The full densification of SiC-30 wt% TiC composites with the addition of $Al_2$O$_3$, $Y_2$O$_3$ and CaO was achieved at the temperature above $1700^{\circ}C$ by spark plasma sintering. The XRD found that 3C-SiC and TiC were maintained the entire SPS process temperature, without phase transformation of SiC and formation of YAG phase to $1800^{\circ}C$. The microstructures of the rapidly densified SiC-30 wt% TiC composites consisted of smaller equiaxed SiC grains and larger TiC grains. The biaxial strength of 635.2 MPa and fracture toughness of 6.12 MPaㆍ$m^{1/2}$ were found for the specimen prepared at $1750^{\circ}C$.

Fracture Behavior of Alumina-Titania-Monazite Composites

  • Paek, Yeong-Kyeun;Chung, Tai-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.443-447
    • /
    • 2005
  • Fracture behavior was investigated in the $Al_2O_3-TiO_2(3 wt{\%})-LaPO_4(25 wt{\%}$) composite ceramics. To improve the fracture toughness of alumina ceramics, $TiO_2$ and $LaPO_4$ as a second phase were introduced. The samples were made by conventional powder processing method. Green compacts were sintered at $1600^{\circ}C$ for 2 h in air. Fracture toughness was tested using Indentation Strength Bending(ISB) method. From the bending test, enhanced fracture toughness was found in the composite, compared to the pure and $TiO_2$-doped alumina. The main factor of the enhancement of fracture toughness seems to be attributed to the weak interphase role of the $LaPO_4$ as a particulate type.

Microstructure and Mechanical Properties of Oxide Dispersion Strengthened alloy Based on Commercially Pure Titanium (순수 타이타늄 기반 산화물분산강화 합금의 미세조직 및 기계적 특성)

  • Park, Taesung;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.327-330
    • /
    • 2018
  • This study is conducted as a preliminary research to verify the feasibility of Ti-based Oxide dispersion strengthened (ODS) alloy. Pure-Ti powder is mixed with $Y_2O_3$ powder and subsequently, mechanically alloyed at $-150^{\circ}C$. The Ti-based ODS powder is hot-isostatically pressed and subsequently hot-rolled for recrystallization. The microstructure consists of elongated grains and Y excess fine particles. The oxide particle size is larger than that of the typical Fe-based ODS steel. Tensile test shows that the tensile ductility is approximately 25%, while the strength is significantly higher than that of pure Ti. The high-temperature hardness of the Ti-ODS alloy is also significantly higher than that of pure Ti at all temperatures, while being lower than that of Ti-6Al-4V. The dimple structure is well developed, and no evidence of cleavage fracture surface is observed in the fracture surface of the tensile specimen.