• Title/Summary/Keyword: $Ti^{3+}$ defects

Search Result 105, Processing Time 0.027 seconds

Crystal Structure and Dielectric Responses of Pulsed Laser Deposited (Ba, Sr)$TiO_3$ Thin Films with Perovskite $LaNiO_3$ Metallic Oxide Electrode

  • Lee, Su-Jae;Kang, Kwang-Yong;Jung, Sang-Don;Kim, Jin-Woo;Han, Seok-Kil
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.258-261
    • /
    • 2000
  • Highly (h00)-oriented (Ba, Sr)TiO$_3$(BST) thin films were grown by pulsed laser deposition on the perovskite LaNiO$_3$(LNO) metallic oxide layer as a bottom electrode. The LNO films were deposited on SiO$_2$/Si substrates by rf-magnetron sputtering method. The crystalline phases of the BST film were characterized by x-ray $\theta$-2$\theta$, $\omega$-rocking curve and $\psi$-scan diffraction measurements. The surface microsturcture observed by scanning electron microscopy was very dense and smooth. The low-frequency dielectric responses of the BST films grown at various substrate temperatures were measured as a function of frequency in the frequency range from 0.1 Hz to 10 MHz. The BST films have the dielectric constant of 265 at 1 kHz and showed multiple dielectric relaxation at the low frequency region. The origin of these low-frequency dielectric relaxation are attributed to the ionized space charge carriers such as the oxygen vacancies and defects in BST film, the interfacial polarization in the grain boundary region and the electrode polarization. We studied also on the capacitance-voltage characteristics of BST films.

  • PDF

Interfacial Microstructure of Diffusion-Bonded W-25Re/Ti/Graphite Joint and Its High-Temperature Stability (확산 접합에 의해 제조된 텅스텐-레늄 합금/티타늄/그래파이트 접합체의 미세구조 및 고온 안정성)

  • Kim, Joo-Hyung;Baek, Chang Yeon;Kim, Dong Seok;Lim, Seong Taek;Kim, Do Kyung
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.751-756
    • /
    • 2016
  • Graphite was diffusion-bonded by hot-pressing to W-25Re alloy using a Ti interlayer. For the joining, a uniaxial pressure of 25 MPa was applied at $1600^{\circ}C$ for 2 hrs in an argon atmosphere with a heating rate of $10^{\circ}C\;min^{-1}$. The interfacial microstructure and elemental distribution of the W-25Re/Ti/Graphite joints were analyzed by scanning electron microscopy (SEM). Hot-pressed joints appeared to form a stable interlayer without any micro-cracking, pores, or defects. To investigate the high-temperature stability of the W-25Re/Ti/Graphite joint, an oxy-acetylene torch test was conducted for 30 seconds with oxygen and acetylene at a 1.3:1 ratio. Cross-sectional analysis of the joint was performed to compare the thickness of the oxide layer and its chemical composition. The thickness of W-25Re changed from 250 to $20{\mu}m$. In the elemental analysis, a high fraction of rhenium was detected at the surface oxidation layer of W-25Re, while the W-25Re matrix was found to maintain the initial weight ratio. Tungsten was first reacted with oxygen at a torch temperature over $2500^{\circ}C$ to form a tungsten oxide layer on the surface of W-25Re. Then, the remaining rhenium was subsequently reacted with oxygen to form rhenium oxide. The interfacial microstructure of the Ti-containing interlayer was stable after the torch test at a temperature over $2500^{\circ}C$.

Variations in surface roughness of seven orthodontic archwires: an SEM-profilometry study

  • Amini, Fariborz;Rakhshan, Vahid;Pousti, Maryam;Rahimi, Hajir;Shariati, Mahsa;Aghamohamadi, Bahareh
    • The korean journal of orthodontics
    • /
    • v.42 no.3
    • /
    • pp.129-137
    • /
    • 2012
  • Objective: The purpose of this study was to evaluate the surface roughness (SR) of 2 types of orthodontic archwires made by 4 different manufacturers. Methods: This in vitro experimental study was conducted on 35 specimens of 7 different orthodontic archwires, namely, 1 nickel-titanium (NiTi) archwire each from the manufacturers American Orthodontics, OrthoTechnology, All-Star Orthodontics, and Smart Technology, and 1 stainless steel (SS) archwire each from the manufacturers American Orthodontics, OrthoTechnology, and All-Star Orthodontics. Aft er analyzing the composition of each wire by energy-dispersive X-ray analysis, the SR of each wire was determined by scanning electron microscopy (SEM) and surface profilometry. Data were analyzed using the Kruskal-Wallis and Mann-Whitney U tests (${\alpha}$ < 0.05). Results: The average SR of NiTi wires manufactured by Smart Technology, American Orthodontics, OrthoTechnology, and All-Star Orthodontics were $1,289{\pm}915A^{\circ}$, $1,378{\pm}372A^{\circ}$, $2,444{\pm}369A^{\circ}$, and $5,242{\pm}2,832A^{\circ}$, respectively. The average SR of SS wires manufactured by All-Star Orthodontics, OrthoTechnology, and American Orthodontics were $710{\pm}210A^{\circ}$, $1,831{\pm}1,156A^{\circ}$, and $4,018{\pm}2,214A^{\circ}$, respectively. Similar to the results of profilometry, the SEM images showed more defects and cracks on the SS wire made by American Orthodontics and the NiTi wire made by All-Star Orthodontics than others. Conclusions: The NiTi wire manufactured by All-Star Orthodontics and the SS wire made by American Orthodontics were the roughest wires.

Defect Structure and Electrical Conduction Mechanism of Manganese Oxide-Titanium Dioxide (산화망간-이산화티탄계의 결함구조 및 전기전도메카니즘)

  • Keu Hong Kim;Jae Shi Choi
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.128-134
    • /
    • 1982
  • The electrical conductivity of n-type polycrystalline MnOx-Ti$O_2$ system containing 0.40, 0.80, and 1.60 mol % of manganese oxide has been measured from 100 to 400$^{\circ}$C and 1100 to 1300$^{\circ}$C under oxygen partial pressures of$10^{-8}\;to\;10^{-1}$ atm. Plots of log conductivity vs. reciprocals of absolute temperature at constant $Po_2$'s are found to be linear with an inflection, and the activation energies obtained from the slopes appear to be an enough average 0.18eV for the extrinsic and 3.70eV for the intrinsic. The log $\sigma$ vs. log $Po_2$ are found to be linear at $Po_2$'s of $10^{-8}\;to\;10^{-1}$atm. The conductivity dependences on $Po_2$at the two temperature regions are closely approximated by $\sigma{\propto}$Po_2$-1}6$ for the extrinsic and $${\sigma}{\propto}Po_2^{-1}4}$$ for the intrinsic, respectively. The predominant defects are believed to be Vo-2e' and $Ti^3$${\cdot}$interstitial at the extrinsic and intrinsic. From the interpretations of conductivity dependences on temperature and$Po_2$ , the conduction mechanisms and possible band models are proposed.

  • PDF

Effect of rubber forming process parameters on channel depth of metallic bipolar plates

  • Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.3
    • /
    • pp.221-232
    • /
    • 2017
  • In this study, bipolar plates in fuel cells are formed using rubber forming process. The effects of important parameters in rubber forming such as hardness and thickness of rubber pad, speed and pressure of punch that compress blank, and physical property of materials on the channel depth were analyzed. In the soft material sheet Al1050, deeper channels are formed than in materials STS304 and Ti-G5. Formed channel depth was increased when hardness of rubber pad was lower, thickness of rubber pad was high, and speed and pressure of punch were high. It was found the deepest channel was achieved when forming process condition was set with punch speed and pressure at 30 mm/s and 55 MPa, respectively using rubber pad having hardness Shore A 20 and thickness 60 mm. The channel depths of bipolar plates formed with Al1050, STS304 and Ti-G5 under the above process condition were 0.453, 0.307, and 0.270 mm, respectively. There were no defects such as wrinkle, distortion, and crack found from formed bipolar plates.

Analysis of Charge Transfer Mechanism in Molecular Memory Device using Temperature-dependent Electrical Measurement (온도에 의존하는 전기적 측정을 이용한 분자 메모리 소자의 전하 이동 메커니즘 분석)

  • Choi, Kyung-Min;Koo, Ja-Ryong;Kim, Young-Kwan;Kwon, Sang-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.615-619
    • /
    • 2008
  • A molecular memory device which has a structure of Al/$Al_2O_3$/ASA-15 LB monolayer/Ti/Al device, was fabricated. To study a charge transfer mechanism of molecular memory devices, current density-voltage (J-V) characteristics were measured at an increasing temperature range from 10 K to 300 K with an interval of 30 K. Strong temperature-dependent electrical property and tunneling through organic monolayer at low bias (below 0.5 V) were appeared. These experimental data were fitted by using a theoretical formula such as the Simmons model. In comparison between the theoretical and the experimental results, it was verified that the fitting results using the Simmons model about direct tunneling was fairly fitted below 0.5 V at both 300 K and 10 K. Hopping conduction was also dominant at all voltage range above 200 K due to charges trapped by defects located within the dielectric stack, including the $Al_2O_3$, organic monolayer and Ti interfaces.

Joining of Multi Nodes of a Titanium Bicycle by the Superplastic Hydroforming and Diffusion Bonding Technology (티타늄 자전거의 다중 조인트 접합을 위한 초소성 하이드로포밍과 확산 접합 기술)

  • Yoo, Y.H.;Lee, S.Y.
    • Transactions of Materials Processing
    • /
    • v.28 no.1
    • /
    • pp.15-20
    • /
    • 2019
  • The superplastic forming/diffusion bonding process has been developed to fabricate a core frame structure with joint nodes out of tubes, for the development of a titanium high performance bicycle. The hydroforming process has been applied for bulging of a tube in the superplastic condition before, and during the diffusion bonding process. In this experiment, a commercial Ti-3Al-2.5V tube was selected as raw material for the study. The forming experiment has been performed using a servo-hydraulic press with a capacity of 200 ton. Next, nitrogen gas was used to acquire necessary pressure for the bulging and bonding of the tubes to fabricate the joint nodes. The pertinent processing temperature was $870^{\circ}C$ for the superplastic hydroforming/diffusion bonding (SHF/DB) process, using the Ti-3Al-2.5V tube. The bonding quality and the progress of bulging and diffusion bonding have been observed by the investigation of the joining interfaces at the cross section of the joint structure. The control of the nitrogen pressure throughout the SHF/DB process, was an important factor to avoid any significant defects in the joint structure. The whole progress stage of the diffusion bonding could be observed at a joint interface. A core structure with 5 joint nodes to manufacture a titanium bicycle could be obtained in a SHF/DB process.

Precipitation In Inconel 718 Alloy

  • Park, Hyung-Sup;Park, Ju
    • Nuclear Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.203-213
    • /
    • 1972
  • The precipitation sequence of Inconel 718 alloy, aged at $760^{\circ}C$ for times up to 200 hr, has been studied by means of electron microscopy and X-ray diffraction methods. The dominant hardening phase was identified as the metastable, body-centered tetragonal $Ni_3Nb$ Phase in the morphology of platelets. The other phases identified in the aging sequence were (Nb, Ti)C and the stable acicular phase of orthorhombic $Ni_3Nb.$ The observations were made on the interaction of dislocations with the precipitates in the underaged condition. The shearing of the precipitates and the planar defects, e.g., stacking faults on i1101 planes of the intermetallic phase, were observed.

  • PDF

THE EFFECT OF CASTING MACHINE AND INVESTMENT ON THE CASTABILITY OF TITANIUM (주입선 형태가 타이타늄 합금의 주조성에 미치는 영향)

  • Kim, Sang-Tae;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.522-533
    • /
    • 2007
  • Statement of problem: Despite of the recent development of the titanium casting system methods, the casting defects such as imperfect casting and internal porosity were frequently observed. Purpose: The purposes of this study were to compare and measure the castability, microhardness, and surface reaction between Grade 2 pure titanium and Ti-6Al-4V by casting these alloys from the different sprue design conditions. Material and methods: Depending on the sprue designs and titanium alloys, 42 ready-made wax patterns were used. By analyzing the remodeling of the cast, internal porosity, microhardness, and titanium surface layer of SEM, there were several results we observed. Results: 1. The measured castability of titanium were categorized in the ascending order: individual sprue group, runner bar group, and single group. This data are based on the statistically signigicant differences. 2. The castability of titanium has not showed the statistically significant differences among the alloys. However, CP-Ti groups were superior to Ti-6Al-4V groups by showing the noticeable castability. 3. The surface layers of the castings of all groups have showed $5{\mu}m$ titanium oxide layers irrespective of sprue designs and titanium alloys. Conclusion: From the above study results, by fabricating the restorations from the centrifugal casting machine direct sprue designs revealed better castability. As we increased the number of sprues in the wax pattern, it revealed better castability. The castability of pure titanium rather than that of Ti-6Al-4V was remarkable. To fabricate the complex forms of the restorations, further researches on the efficient sprue designs and titanium alloys must be made.

THE EFFECTS OF SPURE AND INVENTS ON THE CASTING ACCURACY AND POROSITY OF TI-NI CASTINGS

  • Cho Lee-Ra;Yi Yang-Jin;Park Chan-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.342-350
    • /
    • 2003
  • Statement of problem. Titanium-Nickel alloy might be used in various prosthetic restorations since it has a unique property such as super-elasticity and high fatigue resistance. However, little is known about the casting ability of this alloy. Purpose. This in vitro study compared the casting accuracy and the porosity made with different investments and various sprue designs to ascertain what casting condition would be better for the fabrication of Ti-Ni cast restorations. Material and methods. A total of 70 Ti-Ni alloy crowns were made and divided into 7 groups of 10 copings on a metal master die. For measuring the effect of the sprue numbers, two groups with one and two 8-gauge sprues were compared. Moreover, the results of the conventional sprue and the double thickness sprues were compared. Three investments were used; carbon free phosphate bonded investment, titanium investment and gypsum bonded investment. The cast restorations were evaluated at 48 points on the entire circumferential margin with a stereomicroscope measuring in micrometers. Each crown was radiographically examined for casting defects and porosity. Data on casting accuracy were analyzed using two-way and Post hoc Scheffe's comparison to determine whether significant differences existed at the 95% confidence level. Student-Newman-Keuls test were performed to identify significant differences in the number of voids. Results. The double sprueing group and double thickness group had significantly less marginal discrepancy than the single sprueing group (P<.05 and P<.01, respectively). The castings with phosphate bonded investment showed the least marginal discrepancy and the smoothest surface. The castings invested in the gypsum bonded investment had the greatest gaps in margin and the largest failure rate. The double sprueing group and phosphate bonded investment group had significantly smaller void numbers and smaller void size than the other groups. Conclusion. Within the limitations of this in vitro study, the casting accuracy of the groups using thicker, double sprue design and the phosphate bonded investment was significantly superior. Moreover, void number and size were less than other groups.