• 제목/요약/키워드: $Ti^{3+}$ defects

검색결과 105건 처리시간 0.02초

Effect of double pinning mechanism in BSO-added GdBa2Cu3O7-x thin films

  • Oh, J.Y.;Jeon, H.K.;Lee, J.M.;Kang, W.N.;Kang, B.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권3호
    • /
    • pp.13-17
    • /
    • 2017
  • We investigated the effect of self-assembled BSO nano-defects as pinning centers in BSO-added GdBCO films when the thicknesses of films were varied. 3.5 vol. % BSO-added GdBCO films with varying thicknesses from 200 nm to 1000 nm were deposited on $SrTiO_3$ (STO) substrate by using pulsed laser deposition (PLD) process. For the films with thicknesses of 400 nm and 600 nm, 'anomaly shoulders' in $J_c-H$ characteristic curves were observed near the matching field. The anomaly shoulders appeared in the field dependence of $J_c$ may be attributed to the existence of double pinning mechanisms in thin films. The fit to the pinning force density as a function of reduced field h ($H/H_{irr}$) using the Dew-Hughes' scaling law shows that both the 400 nm- and the 600 nm-thick films have double pinning mechanisms while the other films have a single pinning mechanism. These results indicate that the self-assembled property of BSO result in different role as pinning centers with different thickness.

산소 분압의 변화에 따른 Cr-Doped SrZrO3 페로브스카이트 박막의 저항변화 특성 (Resistive Switching Behavior of Cr-Doped SrZrO3 Perovskite Thin Films by Oxygen Pressure Change)

  • 양민규;박재완;이전국
    • 한국재료학회지
    • /
    • 제20권5호
    • /
    • pp.257-261
    • /
    • 2010
  • A non-volatile resistive random access memory (RRAM) device with a Cr-doped $SrZrO_3/SrRuO_3$ bottom electrode heterostructure was fabricated on $SrTiO_3$ substrates using pulsed laser deposition. During the deposition process, the substrate temperature was $650^{\circ}C$ and the variable ambient oxygen pressure had a range of 50-250 mTorr. The sensitive dependences of the film structure on the processing oxygen pressure are important in controlling the bistable resistive switching of the Cr-doped $SrZrO_3$ film. Therefore, oxygen pressure plays a crucial role in determining electrical properties and film growth characteristics such as various microstructural defects and crystallization. Inside, the microstructure and crystallinity of the Cr-doped $SrZrO_3$ film by oxygen pressure were strong effects on the set, reset switching voltage of the Cr-doped $SrZrO_3$. The bistable switching is related to the defects and controls their number and structure. Therefore, the relation of defects generated and resistive switching behavior by oxygen pressure change will be discussed. We found that deposition conditions and ambient oxygen pressure highly affect the switching behavior. It is suggested that the interface between the top electrode and Cr-doped $SrZrO_3$ perovskite plays an important role in the resistive switching behavior. From I-V characteristics, a typical ON state resistance of $100-200\;{\Omega}$ and a typical OFF state resistance of $1-2\;k{\Omega}$, were observed. These transition metal-doped perovskite thin films can be used for memory device applications due to their high ON/OFF ratio, simple device structure, and non-volatility.

Influence of scaling procedures on the integrity of titanium nitride coated CAD/CAM abutments

  • Gehrke, Peter;Spanos, Emmanouil;Fischer, Carsten;Storck, Helmut;Tebbel, Florian;Duddeck, Dirk
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권3호
    • /
    • pp.197-204
    • /
    • 2018
  • PURPOSE. To determine the extent of treatment traces, the roughness depth, and the quantity of titanium nitride (TiN) removed from the surface of CAD/CAM abutments after treatment with various instruments. MATERIALS AND METHODS. Twelve TiN coated CAD/CAM abutments were investigated for an in vitro study. In the test group (9), each abutment surface was subjected twice (150 g vs. 200 g pressure) to standardized treatment in a simulated prophylaxis measure with the following instruments: acrylic scaler, titanium curette, and ultrasonic scaler with steel tip. Three abutments were used as control group. Average surface roughness (Sa) and developed interfacial area ratio (Sdr) of treated and untreated surfaces were measured with a profilometer. The extent of treatment traces were analyzed by scanning electron microscopy. RESULTS. Manipulation with ultrasonic scalers resulted in a significant increase of average surface roughness (Sa, P<.05) and developed interfacial area ratio (Sdr, P<.018). Variable contact pressure did not yield any statistically significant difference on Sa-values for all instruments (P=.8). Ultrasonic treatment resulted in pronounced surface traces and partially detachment of the TiN coating. While titanium curettes caused predominantly moderate treatment traces, no traces or detectable substance removal has been determined after manipulation with acrylic curettes. CONCLUSION. Inappropriate instruments during regular plaque control may have an adverse effect on the integrity of the TiN coating of CAD/CAM abutments. To prevent defects and an increased surface roughness at the transmucosal zone of TiN abutments, only acrylic scaling instruments can be recommended for regular maintenance care.

Ti (10 nm)-buffered 기판들 위에 저온에서 직접 성장된 무 전사, 대 면적, 고 품질 단층 그래핀 특성 (Transfer-Free, Large-Scale, High-Quality Monolayer Graphene Grown Directly onto the Ti (10 nm)-buffered Substrates at Low Temperatures)

  • 한이레;박병주;엄지호;윤순길
    • 한국재료학회지
    • /
    • 제30권3호
    • /
    • pp.142-148
    • /
    • 2020
  • Graphene has attracted the interest of many researchers due to various its advantages such as high mobility, high transparency, and strong mechanical strength. However, large-area graphene is grown at high temperatures of about 1,000 ℃ and must be transferred to various substrates for various applications. As a result, transferred graphene shows many defects such as wrinkles/ripples and cracks that happen during the transfer process. In this study, we address transfer-free, large-scale, and high-quality monolayer graphene. Monolayer graphene was grown at low temperatures on Ti (10nm)-buffered Si (001) and PET substrates via plasma-assisted thermal chemical vapor deposition (PATCVD). The graphene area is small at low mTorr range of operating pressure, while 4 × 4 ㎠ scale graphene is grown at high working pressures from 1.5 to 1.8 Torr. Four-inch wafer scale graphene growth is achieved at growth conditions of 1.8 Torr working pressure and 150 ℃ growth temperature. The monolayer graphene that is grown directly on the Ti-buffer layer reveals a transparency of 97.4 % at a wavelength of 550 nm, a carrier mobility of about 7,000 ㎠/V×s, and a sheet resistance of 98 W/□. Transfer-free, large-scale, high-quality monolayer graphene can be applied to flexible and stretchable electronic devices.

Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 세라믹스의 압전특성에 미치는 Al2O3의 영향 (Effects of Al2O3 on the Piezoelectric Properties of Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 Ceramics)

  • 김미정;김재창;김영민;어순철;김일호
    • 한국재료학회지
    • /
    • 제15권7호
    • /
    • pp.453-457
    • /
    • 2005
  • Piezoelectric properties of $Pb(Mn_{1/3}Nb_{2/3})O_3-PbZrO_3-PbTiO_3$ ceramics were investigated with $Al_2O_3$ content $(0.0-1.0 wt\%)$. The constituent phases, microstructure, electromechanical coupling factor, dielectric constant, piezoelectric charge and voltage constants were analyzed. Diffraction peaks for (002) and (200) planes were identified by X-ray diffractometer for all the specimens doped with $Al_2O_3$, indicating the MPB (morphotropic phase boundary) composition of tetragonal structures. The highest sintered density of $7.8 g/cm^3$ was obtained for $0.2wt\%\;Al_2O_3-doped$ specimen. Grain size increased by doping $Al_2O_3$ up to $0.3 wt\%$, and it decreased by more doping. Electromechanical coupling factor, dielectric constant, piezoelectric charge and voltage constants increased by doping $Al_2O_3$ up to $0.2wt\%$, and it decreased by more doping. This might result from the formation of oxygen vacancies due to defects in $O^{2-}$ ion sites and the substitution of $Al^{3+}$ ions.

컴퓨터 시뮬레이션을 이용한 임플란트 상부 티타늄 구조물의 주조방안 (CONFUTER-AIDED CASTING DESIGN FOR IMPLANT TITANIUM SUPERSTRUCTURES)

  • 오세욱;이호용;이근우;심준성
    • 대한치과보철학회지
    • /
    • 제41권4호
    • /
    • pp.421-439
    • /
    • 2003
  • Statement of problem : It is difficult to obtain a good titanium casting body using the traditional sprue design because of high melting point of Ti, and the low fluidity and high reactivity of molten Ti. Purpose : A new sprue design for titanium casting bodies needs more trial and error. In order to decrease the number of trial and error, computer simulation(MAGMASOFT, Magmasoft Giessereitechnologie GmbH, Achen, Germany) was used to optimize sprue design in U-shaped implant superstructures. Material and method : Five kinds of sprue were examined for the design of the sprue former for titanium casting: Sprue design A(sprue length 4 mm, rectangular shape, 4 sprues), Sprue design B(sprue length 4 mm. round shape. radius 2 mm, 7 sprues), Sprue design C (sprue length 2 mm, round shape, radius 2 mm, 7 sprues). Sprue design D (sprue length 2 mm, cone shape, large radius 3mm. small radius 2mm, 7 sprues), and Sprue design E( sprue length 2 mm. one unit channel shape). Sprue design F(sprue length 2mm, one unit channel shape) was also examined for the design of the customized sprue former in the Biotan system(Schutz Dental Gmbh, Germany). The casting bodies were taken in Sprue design A, Sprue design D, Sprue design E, and Sprue design F in the Biotan casting system. The numerically predicted defects were compared with the experimental dental castings by the radiographic and sectional view observations. Results : 1. According to the result of computer simulation, turbulence during mold filling was decreased in the sequence of Sprue design F, Sprue design E, Sprue design D, Sprue design C, Sprue design B, and Sprue design A. 2. The calculated solidification time contours indicate that hot spot was moved from the casting body to the sprue button in the sequence of Sprue design A, Sprue design B, Sprue design C, Sprue design D, and Sprue design E. The filling pattern of Sprue design F was similar to that of Sprue design E. 3 The predicted filling pattern shows that less turbulence was found in the customized sprue former than in the standard sprue former. 4. According to the results of the radiographic and cross sectional observations, casting defects less than 1mm were found at the center of a casting body with Sprue design E and Sprue design F. However, larger casting defects of 4mm were found in a casting with Sprue design A. 5. The predicted casting porosity was similar to that of the real casting. Conclusion : One unit channel-type and customized sprue former can be recommended. Further research and developement of various sprue designs using computer simulation in necessary to optimize casting design, in order to reduce the formation of casting defects in implant titanuim super-structures.

유무기 TiO2-SiO2 혼성코팅에 미치는 전구체 배합비율의 영향 (Effect of Precursor Ratio on the Properties of Inorganic-Organic Hybrid TiO2-SiO2 Coating)

  • 김동규;맹완영
    • 한국재료학회지
    • /
    • 제26권5호
    • /
    • pp.271-280
    • /
    • 2016
  • When a single inorganic precursor is used for the synthesis of a sol-gel coating, there is a problem of cracking on the surface of coating layer. In order to solve this problem of surface cracking, we synthesized inorganic-organic coatings that have hybrid properties of inorganic and organic materials. Sols of various ratios (1:0.07, 0.2, 0.41, 0.82, 1.64, 3.26, 6.54, 13.2) of an inorganic precursor of Tetrabutylorthotitanate ($Ti(OBu)_4$, TBOT) and an organic precursor of ${\gamma}$-Methacryloxy propyltrimethoxysilane (MAPTS) were prepared and coated on stainless steels (SUS316L) by dip coating method. The binding structure and the physical properties of the synthesized coatings were analyzed by FT-IR, FE-SEM, FIB (Focused Ion Beam), and a nano-indenter. Dynamic polarization testing and EIS (electrical impedance spectroscopy) were carried out to evaluate the micro-defects and the corrosion properties of the coatings. The prepared coatings show hybrid properties of inorganic oxides and organic materials. Crack free coatings were prepared when the MAPTS ratio was above a critical value. As the MAPTS ratio increased, the thickness and the corrosion resistance increased, and the hardness decreased.

TiZrN 코팅의 레이저 침탄에서 탄소 포텐셜에 따른 침입 거동 (Penetration behavior by carbon potential in laser-carburized TiZrN coatings)

  • 이병현;김태우;홍은표;김성훈;이희수
    • 한국결정성장학회지
    • /
    • 제31권6호
    • /
    • pp.282-286
    • /
    • 2021
  • Laser-carburized TiZrN 코팅의 침탄 공정에서 탄소 페이스트 두께에 따른 탄소의 침투 깊이 및 압축잔류응력 변화를 탄소 포텐셜 측면으로 비교·고찰하였다. 스크린 프린팅과 스핀 코팅 방법을 이용하여 각각 1.1 mm와 0.4 mm의 두께로 탄소 페이스트를 도포하고, 동일한 레이저 조사 조건에서 레이저 침탄을 실시하였다. 탄소 페이스트가 두꺼워질수록 침탄된 TiZrN 시료의 회절 패턴이 더 저각으로 이동하였으며, 고용체 강화 및 격자 왜곡의 심화를 나타내었다. TEM을 이용한 미세구조 분석에서도 두꺼운 페이스트로부터 침탄된 TiZrN 내 결정질 결함이 증가하고 높은 탄소 농도를 보였으며, 이는 페이스트 두께가 두꺼워질수록 탄소 포텐셜도 높아짐을 의미하였다. XPS depth profile 분석에서도 두꺼운 페이스트를 통해 침탄된 TiZrN 시료에서 높은 탄소 농도 및 탄화물 형성을 보이면서, 탄소 페이스트 두께 조절에 의해 침탄에서 표면 탄소농도와 탄소 포텐셜 증가가 일어남을 나타내었다. 아울러, 탄소 농도의 증가는 표면의 압축잔류응력 증가(3.67 GPa에서 4.58 GPa로)에 기여하였음을 확인하였다.

MgO 도프된 Rutile의 Polaron 전도도 (Polaron Conductivity of Rutile Doped with MgO)

  • 김규홍;김형택;최재시
    • 대한화학회지
    • /
    • 제31권3호
    • /
    • pp.215-224
    • /
    • 1987
  • 0.35. 0.75 및 1.25mol% $MgO-TiO_2$계의 전기전도도가 $600{\sim}1100^{\circ}C$$10^{-8}{\sim}10^{-1}$ atm의 산소분압하에서 측정되었다. 일정한 산소분압하에서 $log{\sigma}$ vs. 1/T은 두 온도구간에서 직선관계를 보였으며 직선의 기울기로 부터 계산된 활성화에너지는 본성 영역과 외성 영역에서 각각 1.94eV 및 0.48eV이다. $log\;{\sigma}$ vs log $Po_2$는 본성 영역에서 ${\sigma}\;{\alpha}\;$Po_2^{-1/6}$이며 외성 영역에서 ${\sigma}\;{\alpha}\;$Po_2^{-1/4}$이다. 이 계의 결함구조는 외성 영역에서 $V\"{o}$이며 본성 영역에서 $Ti^3$.로 제안되었다. 특히 외성 영역에서 polaron model이 ${\sigma}$의 T 및 p 의존성으로 부터 규명되었다.

  • PDF

$(1-x)NdAlO_3-xCaTiO_3$ 시스템의 미세구조 관찰 (Microstructure Observations in $(1-x)NdAlO_3-xCaTiO_3$ System)

  • 이확주;류현;박현민;조양구;김재천;남산
    • Applied Microscopy
    • /
    • 제32권1호
    • /
    • pp.9-15
    • /
    • 2002
  • NACT 복합 페브로스카이트 화합물에 대한 미세조직 관찰을 X-ray diffractometer, neutron diffraction 그리고 TEM으로 관찰하였다. $0.3{\leq}x{\leq}0.9$일 때 NACT는 양이온의 1 : 1 chemical ordering 뿐만 아니라 산소팔면체의 antiphase와 inphase tilting을 보여준다. 따라서 APB와 ferroelastic domain 경계가 미세구조에 나타나 있다. X값이 0.3보다 작아지면, chemical ordering은 나타나지 않고 단지 산소팔면체의 antiphase tilting 만이 나타난다. 미세구조에는 tangled dislocation과 2차상이 또한 발견되었다.