• Title/Summary/Keyword: $TNF{\alpha}$ signaling

Search Result 258, Processing Time 0.025 seconds

NADPH Oxidase and Mitochondrial ROS are Involved in the $TNF-{\alpha}$-induced Vascular Cell Adhesion Molecule-1 and Monocyte Adhesion in Cultured Endothelial Cells

  • Yu, Jae-Hyeon;Kim, Cuk-Seong;Yoo, Dae-Goon;Song, Yun-Jeong;Joo, Hee-Kyoung;Kang, Gun;Jon, Ji-Yoon;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.217-222
    • /
    • 2006
  • Atherosclerosis is considered as a chronic inflammatory process. However, the nature of the oxidant signaling that regulates monocyte adhesion and its underlying mechanism is poorly understood. We investigated the role of reactive oxygen species on the vascular cell adhesion molecule-1 (VCAM-1) and monocyte adhesion in the cultured endothelial cells. $TNF-{\alpha}$ at a range of $1{\sim}30\;ng/ml$ induced VCAM-1 expression dose-dependently. BCECF-AM-labeled U937 cells firmly adhered on the surface of endothelial cells when the endothelial cells were incubated with $TNF-{\alpha}$ (15 ng/ml). Ten $\;{\mu}mol/L$ of SB203580, an inhibitor of p38 MAPK, significantly reduced $TNF-{\alpha}-induced$ VCAM-1 expression, compared to the JNK inhibitor ($40\;{\mu}mol/L$ of SP60015) or ERK inhibitor ($40\;{\mu}mol/L$ of U0126). Also, SB203580 significantly inhibited $TNF-{\alpha}-induced$ monocyte adhesion in HUVEC. Superoxide production was minimal in the basal condition, however, treatment of $TNF-{\alpha}$ induced superoxide production in the dihydroethidineloaded endothelial cells. Diphenyleneiodonium (DPI, $10\;{\mu}mol/L$), an inhibitor of NADPH oxidase, and rotenone $(1\;{\mu}mol/L)$, an inhibitor of mitochondrial complex I inhibited $TNF-{\alpha}-induced$ superoxide production, VCAM-1 expression and monocyte adhesion in the endothelial cells. Taken together, our data suggest that NADPH oxidase and mitochondrial ROS were involved in $TNF-{\alpha}-induced$ VCAM-1 and monocyte adhesion in the endothelial cells.

Protective Role of Tissue Transglutaminase in the Cell Death Induced by TNF-α in SH-SY5Y Neuroblastoma Cells

  • Kweon, Soo-Mi;Lee, Zee-Won;Yi, Sun-Ju;Kim, Young-Myeong;Han, Jeong-A;Paik, Sang-Gi;Ha, Kwon-Soo
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.185-191
    • /
    • 2004
  • Tissue transglutaminase (tTGase) regulates various biological processes, including extracellular matrix organization, cellular differentiation, and apoptosis. Here we report the protective role of tTGase in the cell death that is induced by the tumor necrosis factor $\alpha$ (TNF-$\alpha$) and ceramide, a product of the TNF-$\alpha$ signaling pathway, in human neuroblastoma SH-SY5Y cells. Treatment with retinoic acid (RA) induced the differentiation of the neuroblastoma cells with the formation of extended neurites. Immunostaining and Western blot analysis showed the tTGase expression by RA treatment. TNF-$\alpha$ or $C_2$ ceramide, a cell permeable ceramide analog, induced cell death in normal cells, but cell death was largely inhibited by the RA treatment. The inhibition of tTGase by the tTGase inhibitors, monodansylcadaverine and cystamine, eliminated the protective role of RA-treatment in the cell death that is caused by TNF-$\alpha$ or $C_2$-ceramide. In addition, the co-treatment of TNF-$\alpha$ and cycloheximide ecreased the protein level of tTGase and cell viability in the RA-treated cells, supporting the role of tTGase in the protection of cell death. DNA fragmentation was also induced by the co-treatment of TNF-$\alpha$ and cycloheximide. These results suggest that tTGase expressed by RA treatment plays an important role in the protection of cell death caused by TNF-$\alpha$ and ceramide.

Crotamine stimulates phagocytic activity by inducing nitric oxide and TNF-α via p38 and NFκ-B signaling in RAW 264.7 macrophages

  • Lee, Kyung Jin;Kim, Yun Kyu;Krupa, Martin;Nguyen, Anh Ngoc;Do, Bich Hang;Chung, Boram;Vu, Thi Thu Trang;Kim, Song Cheol;Choe, Han
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.185-190
    • /
    • 2016
  • Crotamine is a peptide toxin found in the venom of the rattlesnake Crotalus durissus terrificus and has antiproliferative, antimicrobial, and antifungal activities. Herein, we show that crotamine dose-dependently induced macrophage phagocytic and cytostatic activity by the induction of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α). Moreover, the crotamineinduced expression of iNOS and TNF-α is mediated through the phosphorylation of p38 and the NF-κB signaling cascade in macrophages. Notably, pretreatment with SB203580 (a p38-specific inhibitor) or BAY 11-7082 (an NF-κB inhibitor) inhibited crotamine-induced NO production and macrophage phagocytic and cytotoxic activity. Our results show for the first time that crotamine stimulates macrophage phagocytic and cytostatic activity by induction of NO and TNF-α via the p38 and NF-κB signaling pathways and suggest that crotamine may be a useful therapeutic agent for the treatment of inflammatory disease.

Mechanisms of Korean red ginseng and herb extracts(KTNG0345) for anti-wrinkle activity (홍삼 생약 복합물(KTNG0345)의 피부 주름개선에 관한 작용기전)

  • So, Seung-Ho;Lee, Seong-Kye;Hwang, Eui-Il;Koo, Bon-Suk;Han, Gyeong-Ho;Chung, Jin-Ho;Lee, Min-Jung;Kim, Na-Mi
    • Journal of Ginseng Research
    • /
    • v.32 no.1
    • /
    • pp.39-47
    • /
    • 2008
  • UV irradiation causes skin-aging involving coarse wrinkles, thickening, dyspigmentation, and rough skin surface. These phenomena in complex skin tissue is controlled with receptor of cell surface growth factor and cytokine receptors. The activation of receptors induces multiple downstream signaling pathways including expression of MMPs (matrix metalloproteinases). This study was aimed to elucidate the mechanism for anti-wrinkle activity of Korean red ginseng, Torilis fructus and Corni fructus mixture (KTNG0345). In this animal study, we have investigated decreasing effects of Korean red ginseng mixture on MMP-3 synthesis through diminishing $TNF-{\alpha}$ signaling that express MMP-1, -3, and -9. c-Jun and c-fos as a component of transcription factor AP-1 (activator protein-1) were analyzed the expression level using real time PCR and western blotting. c-Jun was decreased dose dependent manner both gene and protein level where as cfos was not changed. In upstream, JNK and PAK was not changed, but p38 was decreased in down stream. MMP-3, final product in this pathway was significantly decreased in dose dependent manner. These results suggest that Korean red ginseng mixture have a anti-wrinkle activity through $TNF-{\alpha}$ mediated MMPs expression pathway.

Polysaccharide isolated from fermented barley extract activates macrophages via the MAPK and NF-κB pathways (보리발효추출물로부터 분리한 다당의 대식세포 활성화 및 신호 전달)

  • Kim, Han Wool;Jee, Hee Sook;Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.555-563
    • /
    • 2018
  • Barley has nutritional benefits due to its high dietary fiber content; therefore, the intake of whole barley grains is recommended. However, barley is often consumed in the fermented form because of the improved texture and digestibility. The present study was designed to elucidate the intracellular signaling pathway for macrophage activation by the polysaccharide BF-CP from fermented barley. BF-CP is a neutral polysaccharide, composed of neutral sugars, including glucose (70.7%), xylose (11.4%), and arabinose (9.0%). BF-CP exhibited macrophage-stimulatory activity by inducing the production of interleukin (IL)-6, tumor necrosis factor $(TNF)-{\alpha}$, and nitric oxide in RAW 264.7 macrophages. Further, BF-CP treatment strongly increased the IL-6 and $TNF-{\alpha}$ gene expression in a concentration-dependent manner. Signal transduction experiments using immunoblotting showed that BF-CP phosphorylated mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38, and nuclear factor $(NF)-{\kappa}B$, in RAW 264.7 cells in a concentration-dependent manner. These results suggest that BF-CP activates the macrophages via MAPK and $NF-{\kappa}B$ pathways, and also induces an increase in the production of cytokines.

TNF in Human Tuberculosis: A Double-Edged Sword

  • Jae-Min Yuk;Jin Kyung Kim;In Soo Kim;Eun-Kyeong Jo
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.4.1-4.19
    • /
    • 2024
  • TNF, a pleiotropic proinflammatory cytokine, is important for protective immunity and immunopathology during Mycobacterium tuberculosis (Mtb) infection, which causes tuberculosis (TB) in humans. TNF is produced primarily by phagocytes in the lungs during the early stages of Mtb infection and performs diverse physiological and pathological functions by binding to its receptors in a context-dependent manner. TNF is essential for granuloma formation, chronic infection prevention, and macrophage recruitment to and activation at the site of infection. In animal models, TNF, in cooperation with chemokines, contributes to the initiation, maintenance, and clearance of mycobacteria in granulomas. Although anti-TNF therapy is effective against immune diseases such as rheumatoid arthritis, it carries the risk of reactivating TB. Furthermore, TNF-associated inflammation contributes to cachexia in patients with TB. This review focuses on the multifaceted role of TNF in the pathogenesis and prevention of TB and underscores the importance of investigating the functions of TNF and its receptors in the establishment of protective immunity against and in the pathology of TB. Such investigations will facilitate the development of therapeutic strategies that target TNF signaling, which makes beneficial and detrimental contributions to the pathogenesis of TB.

Dimethyl Cardamonin Exhibits Anti-inflammatory Effects via Interfering with the PI3K-PDK1-PKCα Signaling Pathway

  • Yu, Wan-Guo;He, Hao;Yao, Jing-Yun;Zhu, Yi-Xiang;Lu, Yan-Hua
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.549-556
    • /
    • 2015
  • Consumption of herbal tea [flower buds of Cleistocalyx operculatus (Roxb.) Merr. et Perry (Myrtaceae)] is associated with health beneficial effects against multiple diseases including diabetes, asthma, and inflammatory bowel disease. Emerging evidences have reported that High mobility group box 1 (HMGB1) is considered as a key "late" proinflammatory factor by its unique secretion pattern in aforementioned diseases. Dimethyl cardamonin (2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone, DMC) is a major ingredient of C. operculatus flower buds. In this study, the anti-inflammatory effects of DMC and its underlying molecular mechanisms were investigated on lipopolysaccharide (LPS)-induced macrophages. DMC notably suppressed the mRNA expressions of TNF-${\alpha}$, IL-$1{\beta}$, IL-6, and HMGB1, and also markedly decreased their productions in a time- and dose-dependent manner. Intriguingly, DMC could notably reduce LPS-stimulated HMGB1 secretion and its nucleo-cytoplasmic translocation. Furthermore, DMC dose-dependently inhibited the activation of phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1), and protein kinase C alpha (PKC${\alpha}$). All these data demonstrated that DMC had anti-inflammatory effects through reducing both early (TNF-${\alpha}$, IL-$1{\beta}$, and IL-6) and late (HMGB1) cytokines expressions via interfering with the PI3K-PDK1-PKC${\alpha}$ signaling pathway.

A novel blood pressure modulator C1q/TNF-α-related protein 1 (CTRP1)

  • Han, Sora;Yang, Young
    • BMB Reports
    • /
    • v.51 no.12
    • /
    • pp.611-612
    • /
    • 2018
  • $C1q/TNF-{\alpha}-Related$ Protein 1 (CTRP1) has recently been shown to act as a blood pressure regulator, as it induces vasoconstriction. In the aorta, CTRP1 facilitates recruitment of angiotensin II receptor 1 (AT1R) to plasma membrane, through activation of the AKT/AS160 signaling pathway. This leads to activation of the Ras homolog gene family (Rho)/Rho kinase (ROCK) signaling pathway, resulting in vasoconstriction. Accordingly, mice overexpressing Ctrp1 have hypertensive phenotype. Patients with hypertension also display higher circulating CTRP1 levels, compared to healthy individuals, indicating that excessive CTRP1 may affect development of hypertension. Conversely, CTRP1 is regarded as an 'innate blood pressure modulator' because CTRP1 increases blood pressure under dehydration to prevent hypotension. Mice lacking Ctrp1 fail to maintain normotension under dehydration conditions, resulting in hypotension, suggesting that CTRP1 is an essential protein for maintaining blood pressure homeostasis. In conclusion, CTRP1 is a novel, anti-hypotensive vasoconstrictor that increases blood pressure during dehydration-induced hypotension.

Exopolysaccharide-Overproducing Lactobacillus paracasei KB28 Induces Cytokines in Mouse Peritoneal Macrophages via Modulation of NF-${\kappa}B$ and MAPKs

  • Kang, Hee;Choi, Hye-Sun;Kim, Ji-Eun;Han, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1174-1178
    • /
    • 2011
  • Exopolysaccharides (EPSs) are microbial polysaccharides that are released outside of the bacterial cell wall. There have been few studies on EPS-producing lactic acid bacteria that can enhance macrophage activity and the underlying signaling mechanism for cytokine expression. In the current study, EPS-overproducing Lactobacillus (L.) paracasei KB28 was isolated from kimchi and cultivated in conditioned media containing glucose, sucrose, and lactose. The whole bacterial cells were obtained with their EPS being attached, and the cytokine-inducing activities of these cells were investigated. Gas chromatography analysis showed the presence of glucose, galactose, mannose, xylose, arabinose, and rhamnose in EPS composition. EPS-producing L. paracasei KB28 induced the expression of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and IL-12 in mouse macrophages. This strain also caused the degradation of $I{\kappa}B{\alpha}$ and phosphorylation of the major MAPKs: Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK)1/2. The use of pharmacological inhibitors showed that different signaling pathways were involved in the induction of TNF-${\alpha}$, IL-6 and IL-12 by L. paracasei KB28. Our results provide information for a better understanding of the molecular mechanisms of the immunomodulatory effect of food-derived EPS-producing lactic acid bacteria.

Effect of Germinated Brown Rice on LPS-Induced Inflammation in Adipocytes (발아현미가 LPS로 유도된 지방세포의 염증반응에 미치는 영향)

  • Park, Mi-Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.33 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • Germinated brown rice (GBR, Orysa sartiva L.) has been reported to have anti-obesity and anti-inflammatory effects. However, the mechanisms underlying these effects in adipocytes are not fully understood. Therefore, this study was conducted to explore the anti-inflammatory mechanisms of GBR on lipopolysaccharide (LPS)-stimulated 3T3-L1 adipocytes. 3T3-L1 adipocytes were pretreated with GBR extracts (0-20 mg/mL) 1 h before LPS stimulation. The mRNA expression of adipokines and Toll-like receptor 4 (TLR4) were measured by RT-PCR. The protein expressions of TLR4-related molecules were detected by western blotting and nuclear factor-${\kappa}B$ ($NF-{\kappa}B$) activation was measured. Our results showed that GBR extract dose-dependently inhibited mRNA expression of LPS-induced tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). GBR extract was found to inhibit LPS-induced mRNA expression of TLR4 and protein expression of both myeloid differentiation factor 88 (MyD88) and TNF receptor-associated factor 6 (TRAF6). Furthermore, GBR extract significantly inhibited extracellular receptor-activated kinase (ERK) phosphorylation and $NF-{\kappa}B$ activation. These results suggest that GBR extract has the anti-inflammatory effects on LPS-induced inflammation via inhibition of TLR4 signaling, includingthe ERK and $NF-{\kappa}B$ signaling pathways, in adipocytes.