• 제목/요약/키워드: $SrCo_{0.8}Fe_{0.2}O_{3-\delta$

Search Result 31, Processing Time 0.021 seconds

Preparation and Oxygen Permeability of Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Membranes with $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$ Porous Coating Layer (다공성의 $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$가 코팅된 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ 관형 분리막의 제조 및 투과 특성)

  • Kim, Jong-Pyo;Pyo, Dae-Woong;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ membranes with $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$ porous coating layer were prepared by extrusion and dip coating technique. XRD and SEM result showed the tubular membrane possessed the perovskite structure and porouscoating layer (thickness= about $2{\mu}m$) in surface. The oxygen permeation test was measured at condition of ambient air (feed side) and vacuum (permeate side) in the temperature range from 750 to $950^{\circ}C$. The oxygen permeation flux of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ tubular membrane with $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$ porous coating layer reached maximum $3.2mL/min{\cdot}cm^2$ at $950^{\circ}C$ and was higher than non-coated $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ tubular membrane. Long-term stability test result indicated that the oxygen permeation flux was quite stable during the 11 day.

Fabrication and Permeation Properties of Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Membranes for Oxygen Separation (산소분리를 위한 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ 관형 분리막 제조 및 투과 특성)

  • Kim, Jong-Pyo;Son, Sou-Hwan;Park, Jung-Hoon;Lee, Yong-Taek
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.804-809
    • /
    • 2011
  • Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membranes were prepared by extrusion. TGA results of green body membrane after extrusion showed three successive weight losses due to decomposition of organic additives and carbonate. Drying shrinkage rate of tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membranes was no change after 68 h and higher in the membrane with large outer diameter. XRD and SEM results showed the sintered membranes were the single phase structure and dense. The stoichiometric molar ratio agreed well with composition ratio calculated by EDS results for $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membrane. Radial crushing strength of tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membrane with 0.95 mm thickness was 5.7 kgf/$mm^2$ and the oxygen permeation rate of same membrane was 146.85 mL/min ($Jo_2$=2.33 mL/$min{\cdot}cm^2$) at $950^{\circ}C$. Therefore, it was known that use of vacuum pump was more effective than that of sweep gas to obtain higher oxygen permeation flux.

Oxygen Permeability and Resistance to Carbon Dioxide of SrCo0.8Fe0.1Nb0.1O3-δ Ceramic Membrane (SrCo0.8Fe0.1Nb0.1O3-δ 세라믹 분리막의 산소투과 특성 및 이산화탄소에 대한 내성)

  • Kim, Eun Ju;Park, Se Hyoung;Park, Jung Hoon;Baek, Il Hyun
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.415-421
    • /
    • 2015
  • $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ oxide was synthesized by solid state reaction method. Dense ceramic membrane was prepared using as-prepared powder by pressing and sintering at $1250^{\circ}C$. XRD result of membrane showed single perovskite structure. The oxygen permeability were measured under 0.21 atm of oxygen partial pressure ($P_{O_2}$) and between 800 and $950^{\circ}C$. The oxygen permeation flux of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ membrane was increased with the increasing temperature. The maximum oxygen permeation flux was $1.839mL/min{\cdot}cm^2$ at $950^{\circ}C$. Long period permeability experiment was carried out to confirm the phase stability and $CO_2$-tolerance of membrane containing Nb in the condition of air with $CO_2$ (500 ppm) as feed stream at $900^{\circ}C$. The phase stability and $CO_2$-tolerance of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ were investigated by XRD and TG analysis. The result of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ which exposed carbon dioxide for 100 hours indicated 8wt% of $SrCO_3$. But it was known that the level of $SrCO_3$ production dose not have a significant effect on oxygen permeability.

Oxygen Permeation Properties of Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ (BSCF) Membranes under Different Condition of Feed Side and Permeate Side (공급 측과 투과 측 조건에 따른 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ (BSCF) 관형 분리막의 산소투과 특성)

  • Kim, Jong-Pyo;Park, Jung-Hoon;Lee, Yong-Taek;Choi, Young-Jong
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.155-162
    • /
    • 2011
  • Dense tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ (BSCF) membranes were prepared by extrusion technique. The phase structure of the $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ membranes was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Relative density of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ tubular membrane was 94.10%. Oxygen permeation was measured at difference operating condition of feed side and permeate side in the temperature range from 700 to $950^{\circ}C$. The oxygen permeation flux of dense tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ membrane reached maximum 1.37 mL/$min{\cdot}cm^2$ at $900^{\circ}C$ exposed to ambient air (feed side) and vacuum pump (permeate side).

Fabrication and Property of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Hollow Fiber Membranes (Ba0.5Sr0.5Co0.8Fe0.2O3-δ 중공사 분리막의 제조 및 물성)

  • Jeon, Sung Il;Park, Jung Hoon;Kim, Jong Pyo;Sim, Woo Jong;Lee, Yong Taek
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ hollow fiber with o.d. 1.02 mm and i.d. 0.437 mm were fabricated by a phase-inversion spinning technique.The starting $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ precursor was synthesized by the polymerized complex method and then calcined at $900^{\circ}C$. As-prepared powder was dispersed in a polymer solution, and extruded as form of hollow fiber through a spinneret. Finallydense $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ hollow fiber membrane was obtained by sintering for 2 h at $1,080^{\circ}C$ for the application of oxygen separation. In addition, despite a very thin membrane with 0.58 mm, the BSCF hollow fiber membrane possessed a proper mechanical strength of 602.5 MPa.

Characteristics of SrCo1-xFexO3-δ Perovskite Powders with Improved O2/CO2 Production Performance for Oxyfuel Combustion

  • Shen, Qiuwan;Zheng, Ying;Luo, Cong;Zheng, Chuguang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1613-1618
    • /
    • 2014
  • Perovskite-type oxides are promising oxygen carriers in producing oxygen-enriched $CO_2$ gas stream for oxyfuel combustion. In this study, a new series of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ (x = 0.2, 0.4, 0.6, 0.8) was prepared and used to produce $O_2/CO_2$ mixture gas. The phase, crystal structure, and morphological properties of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ were investigated through X-ray diffraction, specific surface area measurements, and environmental scanning electron microscopy. The oxygen desorption performance of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ was studied in a fixed-bed reactor system. Results showed that the different x values of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ have no obvious effects on crystalline structure. However, the oxygen desorption performance of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ is improved by Co doping. Moreover, $SrCo_{0.8}Fe_{0.2}O_{3-{\delta}}$ synthesized via a new EDTA method has a larger BET surface area ($40.396m^2/g$), smaller particle size (48.3 nm), and better oxygen production performance compared with that synthesized through a liquid citrate method.

Preparation and Oxygen Permeation Properties of La0.07Sr0.3Co0.2Fe0.8O3-δ Membrane (La0.07Sr0.3Co0.2Fe0.8O3-δ 분리막의 제조 및 산소투과 특성)

  • Park, Jung Hoon;Kim, Jong Pyo;Baek, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.477-483
    • /
    • 2008
  • $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ oxide was synthesized by a citrate method and a typical dense membrane of perovskite oxide has been prepared using as-prepared powder by pressing and sintering at $1300^{\circ}C$. Precursor of $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ prepared by citrate method was investigated by TGA and XRD. Metal-citrate complex in precursor was decomposed into perovskite oxide in the temperature range of $260{\sim}410^{\circ}C$ but XRD results showed $SrCO_3$ existed as impurity at less than $900^{\circ}C$. Electrical conductivity of membrane increased with increasing temperature but then decreased over $700^{\circ}C$ in air atmosphere ($Po_2=0.2atm$) and $600^{\circ}C$ in He atmosphere ($Po_2=0.01atm$) respectively due to oxygen loss from the crystal lattice. The oxygen permeation flux increased with increasing temperature and maximum oxygen permeation flux of $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ membrane with 1.6 mm thickness was about $0.31cm^3/cm^2{\cdot}min$ at $950^{\circ}C$. The activation energy for oxygen permeation was 88.4 kJ/mol in the temperature range of $750{\sim}950^{\circ}C$. Perovskite structure of membrane was not changed after permeation test of 40 h and the membrane was stable without secondary phase change with 0.3 mol Sr addition.

Effect of Flow Rates of Feed and Sweep Gas on Oxygen Permeation Properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Membrane (공급가스 및 스윕가스 유량에 따른 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 분리막의 산소투과특성)

  • Park, Se Hyung;Sonn, Jong Suk;Lee, Hong Joo;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.407-411
    • /
    • 2015
  • Dense ceramic membranes have been prepared using the commercial perovsikite $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$, powders synthesized by the solid state reaction method. The as-synthesized powders were compressed into disks with 1.0 mm of thickness and the disk was sintered at $1,100^{\circ}C$ for 2 hr. The oxygen permeation flux of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ membrane increased with the increasing temperature and oxygen partial pressure. The activation energy for oxygen permeation was increased with the increasing oxygen partial pressure. Oxygen permeation flux at $950^{\circ}C$ were measured at various flow rates of feed and sweep gas. It has been demonstrated that oxygen permeability increased at elevated flow rates of both gases, but the sweep gas is more influential.

Polarization Resistance of (Ba0.5Sr0.5)0.99Co0.8Fe0.2O3-δ Air Electrode Synthesized by Glycine-Nitrate Process (Glycine-Nitrate 법으로 제조한 (Ba0.5Sr0.5)0.99Co0.8Fe0.2O3-δ 공기극의 분극저항)

  • Moon, Ji-Woong;Lim, Yong-Ho;Oh, You-Keun;Lee, Mi-Jai;Choi, Byung-Hyun;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.800-807
    • /
    • 2005
  • Cathode material, $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-\delta}$, for low temperature SOFC was prepared by the Glycine-Nitrate synthesis Process (GNP). Characteristics of the synthesized powders were studied with controlling the pH of a precursor solution. Highly acidic precursor solution increased a perovskite forming temperature. It is considered that Ba and Sr cannot complex by carboxylic acid group of glycine, because under highly acidic condition the caboxylic group mainly combined with H+ insead of alkaline earth cations. A lack of bond between cations and glycine resulted in selective precipitation of the elements during evaporation of the precursor solution. In case of using precursor solution with pH %2\~3$, a single perovskite phase was obtained at $1000^{\circ}C$. Polarization resistance of $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-\delta}$ was measured by AC impedance spectroscopy from the two electrode symmetric cell. Area specific resistance of the $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-\delta}$ air electrode at $500^{\circ}C\;and\;600^{\circ}C$ were $0.96{\Omega}{\cdot}cm^2\;and\;0.16{\Omega}{\cdot}cm^2$, respectively.

Temperature Dependence of Cr Impurity in La0.6Sr0.4Ti0.3Fe0.7O3-δ Coated Ba0.5Sr0.5Co0.8Fe0.2O3-δ Ion Conducting Membrane for oxygen Separation (산소 분리를 위한 La0.6Sr0.4Ti0.3Fe0.7O3-δ가 코팅된 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 이온전도성 분리막에서 Cr 불순물의 온도 의존성)

  • Park, Yu Gang;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.11-16
    • /
    • 2019
  • $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$(LSTF) coated $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$(BSCF) membranes which has properties of high oxygen permeability and stability to $CO_2$ were applied to a bench scale apparatus to conduct oxygen permeation experiments. Also, the membranes of the laboratory and the bench scale device were divided into three regions according to the temperature gradient in the membrane reactor for comparative analysis. While oxygen permeation experiment were conducted up to $900^{\circ}C$, temperature dependence of Cr deposition was investigated. As a result, it was confirmed that the oxygen permeability was $2.37ml/min{\cdot}cm^2$, which was significantly lower than $3.79ml/min{\cdot}cm^2$ measured in the laboratory apparatus. It was found through XRD and SEM/EDS analysis that the decrease in oxygen permeability was originated from the deposition of gaseous Cr on the membrane surface released from the alloy material of the housing. In particular, a large amount of Cr was found in the medium temperature region.