• Title/Summary/Keyword: $Sol_0{^4}$

Search Result 793, Processing Time 0.032 seconds

Fabrication and Characterization of Macro/Mesoporous SiC Ceramics from SiO2 Templates (실리카 주형을 이용한 메크로/메조다공성 탄화규소 세라믹의 제조와 비교특성)

  • ;Hao Wang
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.528-533
    • /
    • 2004
  • Macroporous SiC with pore size 84∼658 nm and mesoporous SiC with pore size 15∼65 nm were respectively prepared by infiltrating low viscosity preceramic polymer solutions into the various sacrificial templates obtained by natural sedimentation or centrifuge of 20∼700 nm silica sol, which were subsequently etched off with HF after pyrolysis at 1000∼140$0^{\circ}C$ in an argon atmosphere. Three-dimensionally long range ordered macroporous SiC ceramics derived from polymethylsilane (PMS) showed surface area 584.64$m^2$g$^{-1}$ when prepared with 112nm silica sol and at 140$0^{\circ}C$, whereas mesoporous SiC from polycarbosilane (PCS) exhibited the highest surface area 619.4 $m^2$g$^{-1}$ with random pore array when prepared with 20-30 nm silica sol and at 100$0^{\circ}C$. Finally, tile pore characteristics of porous SiC on the types of silica sol, polymers and pyrolytic conditions were interpreted with the analytical results of SEM, TEM, and BET instruments.

Ferroelectric Properties of $(Pb_{0.9}Ca_{0.1})TiO_3$ Thin Films by Sol-Gel Processing (졸-겔법에 의한 $(Pb_{0.9}Ca_{0.1})TiO_3$ 박막의 강유전 특성)

  • Kim, Haeng-Koo;Chung, Su-Tae;Lee, Jong-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.138-145
    • /
    • 1998
  • The $(Pb_{0.9}Ca_{0.1})TiO_3$[PCT] thin films have been deposited by sol-gel processing on Si-wafer and ITO glass substrates. The creak-free films have been obtained by rapid thermal annealing at $700^{\circ}C$ for 10 minute and characterized by XRD, SEM and electrical measurements. Their tetragonality c/a was 1.041 and grain size was $0.15{\sim}0.2{\mu}m$. When the electrode system of sample was Au/PCT/ITO(MFM) and film thickness was $0.8{\mu}m$, dielectric constant, dielectric loss and Curie temperature were about 149, 0.085 and $449^{\circ}C$ at 10kHz, respectively. Spontaneous polarization $P_s$, remnant polarization $P_r$ and coercive field $E_c$ were about $5.29{\mu}C/cm^2$, $4.15{\mu}C/cm^2$ and 82kV/cm calculated by hysteresis loop.

  • PDF

A Study on the Self-cleaning Surface Finishing Using PFOA Free Fluoric Polymer and Silica Nano-sol (PFOA Free 불소 고분자 및 실리카 나노졸을 이용한 self cleaning 표면 가공에 관한 연구)

  • Park, Sung-Min;Kwon, Il-Jun;Kim, Ran;Yeum, Jeong-Hyun;Yoon, Nam-Sik;Lee, Kyeung-Nam
    • Textile Coloration and Finishing
    • /
    • v.21 no.6
    • /
    • pp.1-11
    • /
    • 2009
  • Super-hydrophobic surface, with a water contact angle greater than $150^{\circ}$, has a self cleaning effect termed 'lotus effect'. We introduced super-hydrophobicity onto aramid/rayon mixture fabric with dual-scale structure by assembling silica nano-sol. Mixture fabric was treated with silica nano-sol, fluoric polymer using various parameters such as particle size, concentration. Silica nano-sol size were measured using particle size analyzer. Morphological changes by particle size were observed using field emission scanning electron microscopy(FE-SEM), contact angle measurement equipment. The contact angle of water was about $134.0^{\circ}$, $137.0^{\circ}$, $143.0^{\circ}$, $139.5^{\circ}$ and $139.0^{\circ}$ for mixture fabric coated with 100.2nm, 313.7nm, 558.2nm, 628.5nm and 965.4nm silica nano-sol, compared with about $120.0^{\circ}$ for mixture fabric coated with fluoric polymer. When we mixed particle sizes of 100.2nm and 558.2nm by 7:3 volume ratio, the contact angle of water was about $146.2^{\circ}$. And we mixed particle sizes of 313.7nm and 558.2nm by 7:3 volume ratio, the contact angle of water was about $141.8^{\circ}$. Also we mixed particle sizes of 558.2nm and 965.4nm by 7:3 volume ratio, the best super-hydrophobicity was obtained. In this paper, we fabricated the water-repellent surfaces with various surface structures by using four types of silica nano-sol, and we found that the dual-scale structure was very important for the super-hydrophobicity.

Crystallographic and Magnetic Properties of Nano-sized Nickel Substituted Cobalt Ferrites Synthesized by the Sol-gel Method

  • Choi, Won-Ok;Lee, Jae-Gwang;Kang, Byung-Sub;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.59-63
    • /
    • 2014
  • Nano-sized nickel substituted cobalt ferrite powders, $Ni_xCo_{1-x}Fe_2O_4$ ($0.0{\leq}x{\leq}1.0$), were fabricated by the sol-gel method, and their crystallographic and magnetic properties were studied. All the ferrite powders showed a single spinel structure, and behaved ferrimagnetically. When the nickel substitution was increased, the lattice constants and the sizes of particles of the ferrite powders decreased. The M$\ddot{o}$ssbauer absorption spectra of $Ni_xCo_{1-x}Fe_2O_4$ ferrite powders could be fitted with two six-line subspectra, which were assigned to a tetrahedral A-site and octahedral B-sites of a typical spinel crystal structure. The increase in values of the magnetic hyperfine fields indicated that the superexchange interaction was stronger, with the increased nickel concentration in $Ni_xCo_{1-x}Fe_2O_4$. This could be explained using the cation distribution, which can be written as, $(Co_{0.28-0.28x}Fe_{0.72+0.28x})[Ni_xCo_{0.72-0.72x}Fe_{1.28-0.28x}]O_4$. The two values of the saturation magnetization and the coercivity decreased, as the rate of nickel substitution was increased. These decreases could be explained using the cation distribution, the magnetic moment, and the magneto crystalline anisotropy constant of the substituted ions.

Microwave Sol-Gel Preparation of NaLa(MoO4)2:Eu3+/Yb3+ Particles and Their Upconversion Photoluminescence Properties

  • Lim, Chang Sung
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.599-603
    • /
    • 2014
  • $NaLa_{1-x}(MoO_4)_2:Eu^{3+}/Yb^3$ phosphors with doping concentrations of $Eu^{3+}$ and $Yb^{3+}$ ($x= Eu^{3+}+Yb^{3+}$, $Eu^{3+}=0.05$, 0.1, 0.2 and $Yb^{3+}= 0.2$, 0.45) were successfully synthesized by the microwave-modified sol-gel method, and the upconversion and spectroscopic properties were investigated. Well-crystallized particles showed a fine and homogeneous morphology with particle sizes of $2-5{\mu}m$. Under excitation at 980 nm, $NaLa_{0.5}(MoO_4)_2:Eu_{0.05}Yb_{0.45}$ particles exhibited a strong 525-nm emission band and a weak 550-nm emission band in the green region, and a very weak 665-nm emission band in the red region. The strong 525-nm emission in the green region corresponds to the $^7F_1{\rightarrow}^5D_1$ transition and the weak 550-nm emission in the green region corresponds to the $^7F_0{\rightarrow}^5D_2$ transition, while the very weak emission 665-nm band in the red region corresponds to the $^5D_0{\rightarrow}^7F_3$ transition. The Raman spectra of the doped particles indicated the domination of strong peaks at higher frequencies of 762, 890, 1358 and $1430cm^{-1}$ and weak peaks at lower frequencies of 323, 388 and $450cm^{-1}$ induced by the disorder of the $[MoO4]^{2-}$ groups with the incorporation of the $Eu^{3+}$ and $Yb^{3+}$ elements into the crystal lattice or by a new phase formation.

Luminescence Properties of Zn2SiO4:Mn, M(M=Cr, Ti) Green Phosphors Prepared by Sol-gel Method (졸-겔법으로 제조한 Zn2SiO4:Mn, M(M=Cr, Ti) 녹색 형광체의 발광특성)

  • 안중인;한정화;박희동
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.637-643
    • /
    • 2003
  • In order to improve the photoluminescent properties and crystallinity, Zn$_2$SiO$_4$:Mn, M(M=Cr, Ti) phosphors were synthesized by the sol-gel method. The willemite single phase was obtained at 110$0^{\circ}C$, which is lower temperature than that of the conventional solid-state reaction (130$0^{\circ}C$). The characteristics of fired samples were obtained by a 147 nm excitation source under VUV (Vacuum Ultraviolet). To investigation the effect of co-dopant, the content of Mn and the ratio of $H_2O$ to TEOS was fixed as 2 ㏖% and 36. 1, respectively. The highest emission intensity was obtained when the concentration of Cr and Ti was 0.1 ㏖% relative to Zn$_2$SiO$_4$:Mn. While the emission intensity decrease continuously the decay time improved as increased the Cr concentration. In the case of Ti added samples, however, the emission intensity increase up to 2 ㏖% concentration.

Effects of Doping Concentrations and Annealing Temperatures on the Electrical and Optical Properties of Ga-doped ZnO Thin Films by Sol-gel Method (Sol-gel 법으로 제작한 Ga-doped ZnO 박막의 도핑 농도와 열처리 온도가 전기적 및 광학적 특성에 미치는 효과)

  • Kang, Seong-Jun;Joung, Yang-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.558-564
    • /
    • 2012
  • We fabricated Ga doped ZnO (GZO) thin films on the glass substrate (Eagle 2000) with various of Ga doping concentration and annealing temperatures using sol-gel method, electrical and optical properties were investigated. When the GZO thin films doped with 1 mol% of Ga and annealed at $600^{\circ}C$, the excellent (002) orientation was observed. In the results of Hall measurement, carrier concentration decreased and resistivity increased due to segregation effect with increasing of the Ga doping concentration. The largest carrier concentration and lowest resistivity were $9.13{\times}10^{18}cm^{-3}$ and $0.87{\Omega}cm$, respectively, in the GZO thin films doped with 1 mol% Ga and annealed at $600^{\circ}C$. All films is higher than 80 % in the visible light region. Energy band gap narrowing due to Burstein-Moss effect was observed with increasing of Ga doping concentration from 1 to 4 mol%.

Amperometric Glucose Biosensor Based on Sol-Gel-Derived Zirconia/Nafion Composite Film as Encapsulation Matrix

  • Kim, Hyun-Jung;Yoon, Sook-Hyun;Choi, Han-Nim;Lyu, Young-Ku;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • An amperometric glucose biosensor has been developed based on the use of the nanoporous composite film of sol-gel-derived zirconia and perfluorosulfonated ionomer, Nafion, for the encapsulation of glucose oxidase (GOx) on a platinized glassy carbon electrode. Zirconium isopropoxide (ZrOPr) was used as a sol-gel precursor for the preparation of zirconia/Nafion composite film and the performance of the resulting glucose biosensor was tuned by controlling the water content in the acid-catalyzed hydrolysis of sol-gel stock solution. The presence of Nafion polymer in the sol-gel-derived zirconia in the biosensor resulted in faster response time and higher sensitivity compared to those obtained at the pure zirconia- and pure Nafion-based biosensors. Because of the nanoporous nature of the composite film, the glucose biosensor based on the zirconia/Nafion composite film can reach 95% of steady-state current less than 5 s. In addition, the biosensor responds to glucose linearly in the range of 0.03-15.08 mM with a sensitivity of 3.40 $\mu$A/mM and the detection limit of 0.037 mM (S/N = 3). Moreover, the biosensor exhibited good sensor-to-sensor reproducibility (~5%) and long-term stability (90% of its original activity retained after 4 weeks) when stored in 50 mM phosphate buffer at pH 7 at 4 ${^{\circ}C}$.

Preparation and Properties of Y2O3-Doped ZrO2 Films on Etched Al Foil by Sol-Gel Process

  • Chen, Fei;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.107-112
    • /
    • 2015
  • The oxide films formed on etched aluminum foils play an important role as dielectric layers in aluminum electrolytic capacitors. $Y_2O_3$-doped $ZrO_2$ (YZ) films were coated on the etched aluminum foils by sol-gel dip coating, and the electrical properties of YZ-coated Al foils were characterized. YZ films annealed at $450^{\circ}C$ were crystallized into a cubic phase, and as the $Y_2O_3$ doping content increased, the unit cell of $ZrO_2$ expanded and the grain size decreased. The etch pits of Al foils were filled by YZ sol when it dried at atmospheric pressure after repeating for several times, but this step could essentially be avoided when being dried in a vacuum. YZ-coated foils indicated that the specific capacitance and dissipation factor were $2-2.5{\mu}F/cm^2$ and 2-4 at 1 kHz, respectively, and the leakage current and withstanding voltage of films approximately 200 nm thick were $5{\times}10^{-4}A$ at 21 V and 22 V, respectively. After being anodized at 500 V, the foils exhibited a specific capacitance and dissipation factor of $0.6-0.7{\mu}F/cm^2$ and 0.1-0.2, respectively, at 1 kHz, while the leakage current and withstanding voltage were $2{\times}10^{-4}-3{\times}10^{-5}A$ at 400 V and 420-450 V, respectively. This suggests that YZ film is a promising dielectric that can be used in high voltage Al electrolytic capacitors.

The Etching Characteristics of (Ba0.6Sr0.4)TiO3 films Using Ar/CF4 Inductively Coupled Plasma (Ar/CF4 유도결합 플라즈마를 이용한 (Ba0.6Sr0.4)TiO3 박막의 식각 특성)

  • 강필승;김경태;김동표;김창일;이수재
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.933-938
    • /
    • 2002
  • (Ba,Sr)TiO$_{4}$ (BST) thin films on Pt/Ti/SiO$_{2}$/Si substrates were deposited by a sol-gel method and the etch characteristics of BST thin films have been investigated as a function of gas mixing ratio. The maximum etch rate of the BST films was 440 $AA$/min under such conditions as: CF$_{4}$(CF$_{4}$+Ar) of 0.2, RF-power of 700 W, DC-bias voltage of -200 V, pressure of 15 mTorr and substrate temperature of 30 $^{circ}C$. The selectivities of BST to Pt, SiO$_{2}$ and PR were 0.38, 0.25 and 0.09, respectively. In the XPS (X-ray photoelectron spectroscopy) analysis, Barium (Ba) and Strontium (Sr) component in BST thin films formed low volatile compounds such as BaFx, SrFx, which are forms by the chemical reaction with F atoms and is removed by Ar ion bombardment. Titanium (Ti) is removed by chemical reaction such as TiF with ease. The result of secondary ion mass spectrometry (SIMS) analysis confirmed the existence of the BaFx, SrFK, TiFx.