• Title/Summary/Keyword: $Sol^3$

Search Result 2,320, Processing Time 0.033 seconds

Coloration of Glasses with Squarylium Dye by Sol-Gel Process (Sol-Gel법을 이용한 Squarylium색소의 유리착색)

  • 김성훈;한선경;송경헌;임용진
    • Textile Coloration and Finishing
    • /
    • v.6 no.1
    • /
    • pp.49-53
    • /
    • 1994
  • The transparent coloration of glasses has been successfully achieved by coated glass surface with squarylium dye by the sol-gel colored coating method. Treatment of sol-gel colored coating layer with HCI(g) greatly decreases the absorbance at λ$_{max}$, that increases exposure to $NH_{3}$(g) and the reversible color-colorless responce was extremely rapid.d.

  • PDF

Development of Hybrid Sol-Gel Coating to Prevent Corrosion of Magnesium Alloys (마그네슘 합금의 방청을 위한 하이브리드 졸-겔 코팅제의 개발)

  • Lee, Dong Uk;Kim, Young Hoon;Moon, Myung Jun
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.30-36
    • /
    • 2018
  • The high rate of corrosion of magnesium alloys makes it limited for industrial applications. Therefore, surface treatment is required to enhance their corrosion resistance. In our study, a chemical conversion coating for protecting the corrosion of the magnesium alloy, AZ31B, was prepared by using a phosphate-permanganate solution. The chemical conversion coating had a limited protection ability due to defects arising from cracks and pores in the coating layer. The sol-gel coating was prepared by using trimethoxymethylsilane (MTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) as precursors, and aluminum acetyl acetonate as a ring opening agent. The corrosion protection properties of sol-gel and conversion coatings in 0.35wt% NaCl solution were measured by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The EIS results indicated that the resistance of the chemical conversion coating with the sol-gel coating was significantly improved through the sol-gel sealed phosphate-permanganate conversion coating. The results of the potentiodynamic polarization test revealed that the sol-gel coating decreased the corrosion current density ($I_{corr}$). The SEM image showed that the sol-gel coating sealed conversion coating and improved corrosion protection.

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.

Preparation of Glass-Ceramics in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Technique : (II) Crystallization of $Li_2O-Al_2O_3-TiO_2-SiO_2$ Monolithic Gel Prepared by Sol-Gel Method (Sol-Gel 법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$ 계 다공성 결정화 유리의 제조 : (II) Sol-Gel 법에 의해 제조된 $Li_2O-Al_2O_3-TiO_2-SiO_2$ 계 괴상겔의 결정화)

  • 조훈성;양중식
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.507-515
    • /
    • 1995
  • The monolithic dry gels of the Li2O-Al2O3-TiO2-SiO2 system were prepared by the sol-gel technique using metal alkoxides as starting materials to obtain monolithic glass-ceramics at low temperature without melting. Activation energy for the crystal growth of the gel with 6.05% TiO2, nucleating ageng, for the preparation of Li2O-Al2O3-TiO2-SiO2 system glass-ceramic was 101.14kcal/mol. As a result of the analysis of DTA & XRD, it was confirmed that the crytallization of Li2O-Al2O3-TiO2-SiO2 system glass-ceramic was the most efficient when 6.05% TiO2, nucleating agent, was added. $\beta$-eucryptite solid solution crystals and $\beta$-spodumene solid solution crystals were detected in the sample heat treated above 85$0^{\circ}C$. The sintered gel heat treated at 85$0^{\circ}C$ had the specific surface area of 185$m^2$/g, the pore volume of 0.19cc/g and the average pore radius of 20.8$\AA$. This shows that the sintered gel is also comparatively porous material. In temperature range of 25~85$0^{\circ}C$ thermal expansion coefficient of the specimen which was crystallized for 10hrs at 85$0^{\circ}C$ was 6.7$\times$10-7/$^{\circ}C$, which indicated that the crystallized specimen was turned out to be the glass-ceramic with low thermal expansion.

  • PDF

Electrical properties of PZT films on Pt and $LaNiO_3$ electrode by using sol-gel method (Pt와 $LaNiO_3$ 전극에 대한 PZT(53/47) sol-gel 막의 전기적 특성)

  • Seo, Byung-Jun;Yeo, Ki-Ho;Ryu, Ji-Goo;Kim, Kang-Eon;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.641-643
    • /
    • 2003
  • The ferroelectric properties of PZT(53/47) thin film was investigated by methoxy enthanol solution based on sol-gel method. The thickness of each layer by spincoating 0.25M sol at one time was $0.1{\mu}m$ and crack-free film was formed. $LaNiO_3/Si(100)$ electrode and $Pt/Ti/SiO_2/Si(100)$ electrode was coated by PZT sol at several times. PZT orientation was confirmed as a method of XRD and coercive field(Ec) as well as remnant polarization(Pr) was investigated from hysterisis curve. As a result of XRD analysis, we can know that the orientation of on PZT/LNO/Si(100) is better than on $Pt/Ti/SiO_2/Si(100)$. The remnant polarization(Pr) in LNO electrode was $87.5{\mu}C/cm^2$ and $39.8{\mu}C/cm^2$ in Pt. From this figures, it is investigated that the Pr in LNO electrode was better than in Pt.

  • PDF

The Preparation of Nanocomposition Titania sol for Visible light activation (가시광 반응성을 위한 $TiO_2$계 복합 sol 합성)

  • Lee, Gang;Hwang, Du-Seon;Kwon, Sun-Hyeong;Kim, Seon-Jae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.207-207
    • /
    • 2003
  • 최근 광촉매 재료로 각광받고 있는 TiO$_2$는 band gap 에너지가 3.0-3.2eV로 자외선 영역과 일부 가시광선 영역에서 활성을 갖는 것으로 알려져 있다. 따라서 용액 중에 결정화 및 안정화 되어있는 TiO$_2$의 band gap 에너지를 낮춘다면 가시광 영역의 광반응을 얻을 수 있다. 이에 본 연구는 G. Sato등이 제안한 방법으로 TiO$_2$ sol을 제조할 때 band gap 에너지를 낮추고자 천이 금속원소를 첨가하여 복합 및 담지된 TiO$_2$계 복합 sol을 합성하고자 하였다 출발원료는 TiC1$_4$를 가수분해하여 제조한 TiOCl$_2$에 천이금속원소인 V, Cr, Fe, Ni, Nb 등의 chloride 화합물을 첨가하여 중화 및 세척과정을 거친 후, 과산화수소수에 용해하여 전구체 용액인 titania peroxo용액을 제조하였다 제조된 전구체 용액은 온도와 시간을 변수로 각각 열처리하여 TiO$_2$계 복합 sol을 합성하였다. 제조된 시편은 X-선 회절 분석, 투과전자현미경, particle size analyzer, ζ-potential analyzer 및 UV-VIS Spectrometer 통을 이용하여 천이금속 첨가에 따른 TiO$_2$계 복합 sol의 형성과정과 특성변화를 관찰하였다.

  • PDF

The Preparation and Magnetic Properties of Single-Crystallite of Ba-Ferrite from Ba-Sol Coated $\delta$-FeOOH (Ba-Sol을 도포한 $\delta$-FeOOH로부터 Ba-Ferrite 단결정 미리자의 제조와 그 자기적 특성)

  • 박영도;이훈하;이재형;오영우;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1383-1391
    • /
    • 1995
  • Hexagonal $\delta$-FeOOH was coated with Ba-Sol, which was produced by hydrolizing Ba(OC2H5)2, Ba-Sol coated $\delta$-FeOOH spread on a stainless plate, dried at 8$0^{\circ}C$ and then heat-treated. In this way, Ba-ferrite fine particles were produced. although there was a difference in a degree of hydrolysis of Ba(OC2H5)2, crystalline phase of Ba-ferrite appeared around 617$^{\circ}C$, and Ba-ferrite single phase was obtained after heat treatment at 80$0^{\circ}C$ for 2 hr. When Ba-ferrite was made from Ba-Sol coated $\delta$-FeOOH, $\delta$-FeOOH was thermally decomposed to $\alpha$-Fe2O3 at $700^{\circ}C$, producing a porous structure which was observed by TEM photographs. But the porous structure was not observed at 80$0^{\circ}C$. Ba-ferrite, heat-treated at 80$0^{\circ}C$ for 2 hr, had mean particle size of 1000$\AA$, lattice parameter of a0=5.889243 $\AA$ and c0=23.214502 $\AA$, a saturation magnetization ($\sigma$8) of 45.3 emu/g and a coercive force (Hc) of 5200Oe.

  • PDF