• Title/Summary/Keyword: $SnO_2$film

Search Result 467, Processing Time 0.028 seconds

Dielectric properties of ${Ta_2}{O_5}$ thin film capacitor with $SnO_2$ thin film underlayer ($SnO_2$ 박막을 이용한 ${Ta_2}{O_5}$박막 커패시터의유전특성)

  • Kim, Jin-Seok;Jeong, Gang-Min;Lee, Mun-Hui
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.759-766
    • /
    • 1994
  • Our investigation aimed to reduce the leakage current of $Ta_2O_5$ thin film capacitor by layering SnOz thin film layer under Ta thin film, thereby supplying extra oxygen ions from the $SnO_{2}$ underlayer to enhance the stoichiometry of $Ta_2O_5$ during the oxidation of Ta thin film. Tantalum was evaporated by e-beam or sputtered on p-Si wafers with various deposition temperatures and was oxidized by dry--oxygen at the temperatures between $500^{\circ}C$ and $900^{\circ}C$. Aluminum top and bottom electrodes were formed to make Al/$Ta_2O_5$/p-Si/Al or $Al/Ta_2O_5/SnO_2$p-Si/AI MIS type capacitors. LCR meter and pico-ammeter were used to measure the dielectric constants and leakage currents of the prepared thm film capacitors. XRD, AES and ESCA were employed to confirm the crystallization of the thin f~lm and the compositions of the films. Dielectric constant of $Ta_2O_5$ thin film capacitor with $SnO_{2}$ underlayer was found to be about 200, which is about 10 times higher than that of $Ta_2O_5$ thin film capacitor without $SnO_{2}$ underlayer. In addition, higher oxidation temperatures increased the dielectric constants and reduced the leakage current. Higher deposition temperature generally gave lower leakage current. $Ta_2O_5/SnO_2$ capacitor deposited at $200^{\circ}C$ and oxidized at $800^{\circ}C$ showed significantly lower leakage current, $10^{-7}A/\textrm{cm}^2$ at $4 \times 10^{5}$V/cm, compared to the one without $SnO_{2}$ underlayer. XRD showed that $Ta_2O_5$ thin film was crystallized above $700^{\circ}C$. AES and ESCA showed that initially the $SnO_{2}$, underlayer supplied oxygen ions to oxidize the Ta layer, however, Sn also diffused into the Ta thin film layer to form a new $Ta_xSn_YO_Z$ , ternary oxide layer after all.

  • PDF

Application of Inverse Pole Figure to Rietveld Refinement: III. Rietveld Refinement of $SnO_2$ Thin Film using X-ray Diffraction Data

  • Kim, Yong-Il;Jung, Maeng-Joon;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.354-358
    • /
    • 2000
  • The SnO$_2$film was deposited on a corning glass 1737 substrate by plasma enhanced chemical vapor deposition using a gas mixture of SnCl$_4$, $O_2$, and Ar. The film thickness was measured using $\alpha$-step and was about 9400$\AA$. The conventional X-ray diffractometry and pole figure attachment were used to refine the crystal structure of SnO$_2$ thin film. Six pole figures, (200), (211), (310), (301), (321), and (411), were measured with CoK$_\alpha$ radiation in reflection geometry. The X-ray diffraction data were measured at room temperature using CuK$_\alpha$ radiation with graphite monochromator. The agreement between calculated and observed patterns for the normal direction of SnO$_2$ thin film was not satisfactory due to the severely preferred orientation effect. The Rietveld refinement of heavily textured SnO$_2$ thin film was successfully achieved by adopting the pole density distribution of each reflection obtained from the inverse pole figure as a correction factor for the preferred orientation effect. The R-weighted pattern, R$_wp$, was 15.30%.

  • PDF

Analysis of Sputter-Deposited SnO thin Film with SnO/Sn Composite Target (SnO/Sn 혼합 타겟을 이용한 SnO 박막 제조 및 특성)

  • Kim, Cheol;Kim, Sungdong;Kim, Sarah Eunkyung
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.222-227
    • /
    • 2016
  • Tin oxides have been studied for various applications such as gas detecting materials, transparent electrodes, transparent devices, and solar cells. p-type SnO is a promising transparent oxide semiconductor because of its high optical transparency and excellent electrical properties. In this study, we fabricated p-type SnO thin film using rf magnetron sputtering with an SnO/Sn composite target; we examined the effects of various oxygen flow rates on the SnO thin films. We fundamentally investigated the structural, optical, and electrical properties of the p-type SnO thin films utilizing X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV/Vis spectrometry, and Hall Effect measurement. A p-type SnO thin film of $P_{O2}=3%$ was obtained with > 80% transmittance, carrier concentration of $1.12{\times}10^{18}cm^{-3}$, and mobility of $1.18cm^2V^{-1}s^{-1}$. With increasing of the oxygen partial pressure, electrical conductivity transition from p-type to n-type was observed in the SnO crystal structure.

Preparation of SnO$_2$ Thin Films by Chemical Vapor Deposition Using Hydrolysis of SnCla$_4$ and Gas-sensing Characterisics of the Film -Effect of Deposition Variables on the Deposition Behavior and the Electrical Resistivity of SnO$_2$ Thin Film- (SnCl$_4$가수분해 반응의 화학증착법에 의한 SnO$_2$박막의 제조 및 가스센서 특징(I) Preparation of SnO2 Thin Films by chemical Vapor Deposition Using Hydrolysis of SnCl4 and gas-sensing characteristics of the Film)

  • 김용일;김광호;박희찬
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.2
    • /
    • pp.18-23
    • /
    • 1990
  • Thin films of tin oxide were prepared by chemical vapor deposition (C.V>D) using the hydrolysis reaction of SnCl4, Deposition rate increased with the increase of temperature up to $500^{\circ}C$and then decreased at $700^{\circ}C$, Deposition rate with SnCl4 partial pressure showed RidealEley behavir. It was found that SnO2 thin film deposited at the temperature above $400^{\circ}C$ had(110) and (301) plane preferred orientation with crystallinity of rutite structure. Electrical resisvity of SnO2 thin film decreased with increase increase of deposition temperature and showed minimum value of 10-3 ohm at $500^{\circ}C$and than largely increased increased with further increase of deposition temperture.

  • PDF

Crystal Structure Refinement of $SnO_{2}$ Thin Film Using X-ray Scattering (X-선 산란을 이용한$SnO_{2}$ 박막의 결정구조 정밀화)

  • Kim, Yong-Il;Nam, Seung-Hoon;Park, Jong-Seo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1939-1943
    • /
    • 2003
  • The precise structural analysis of $SnO_{2}$ thin film, which was prepared by PECVD and thickness 2400 ${\AA}$, was tried to do the structural refinement using X -ray diffraction data. The observed diffraction patterns of $SnO_{2}$ thin film had the strongly preferred orientation effect. WIMV method was used to correct the preferred orientation effect. The final weighted R-factor, $R_{WD}$ was 7.92 %. The lattice parameters, a = b == 4.7366(1) ${\AA}$ and c = 3.1937(1) ${\AA}$, were almost in accordance with ones of $SnO_{2}$ powder.

  • PDF

Low Temperature Deposition of the $In_2O_3-SnO_2$, $SnO_2$ and $SiO_2$ on the Plastic Substrate by DC Magnetron Sputtering

  • Kim, Jin-Yeol;Kim, Eung-Ryeol;Lee, Jae-Ho;Kim, Soon-Sik
    • Journal of Information Display
    • /
    • v.2 no.1
    • /
    • pp.38-42
    • /
    • 2001
  • Thin films of $In_2O_3-SnO_2$(ITO), $SnO_2$, and $SiO_2$ were prepared on the PET substrate by DC magnetron roll sputtering. 135 nm thick ITO film on $SiO_2$/PET substrate has sheet resistance as low as 55 ${\Omega}/square$ and transmittance as high as 85%. $H_2O$gas permeation through the film was 0.35 g/$m^2$ in a day. These properties are enough on optical film for the plastic LCD substrate or touch panel. Both refractive index and sheet resistance of ITO was found to be very sensitive to $O_2$ flow rate. Oxygen flow conditions have been optimized from 4 to 5 SCCM at $10^{-3}$torr. It is also shown that both thickness of $SnO_2$ and refractive index of $SiO_2$ decrease as $O_2$ flow rate increases.

  • PDF

Methane gas sensing effect of SnO$_{2}$ fine particle mixed with inhibitor to crystal growth (결정성장 억제재를 첨가한 SnO$_{2}$ 미세입자의 메탄가스 감지효과)

  • 홍영호;강봉휘;이덕동
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.38-43
    • /
    • 1996
  • A coprecipitation method was used for preparing Ca and Pt doped $SnO_2$ fine powder. Components of the powder were investigated by XPS and SIMS. Crystallite size and specific surface area were investigated by TEM, XRD, and BET analysis. $SnO_2$(Ca)/Pt based thick film devices were prepared by a screen printing technique for methane gas detection. Then sensing characteristics of the devices were investigated. As Ca and Pt added, the crystal growth of $SnO_2$ was suppressed during calcining and sintering, and the sensitivity of $SnO_2$(Ca)/Pt thick film to methane gas was enhanced. For the Pt doped $SnO_2$ fine particle, the thick film device shows sensitivity of about 83% to 2000 ppm methane gas at an operating temperature of >$400^{\circ}C$.

  • PDF

A study on characteristics of thin film $SnO_2$ gas sensor (박막형 $SnO_2$가스 센서의 특성에 관한 연구)

  • 김상연;송준태
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.278-284
    • /
    • 1995
  • Thin fihn SnO$_{2}$ Gas Sensor was fabricated by electron-beam evaporation system and the target made by general firing method for the purpose of detecting gas components in air, especially methane gas. SnO$_{2}$ thin film was prepared on the polished alumina substrate which Pt interdigital electrode was precoated. The effects of annealing temperature and substrate temperature on the structural properties of SnO$_{2}$ thin film on glass were investigated using the X-ray diffraction. The good crystalline structure is formed when substrate temperature is 150[.deg. C] and annealing condition is 550[.deg. C], 1[hour]. And the sensing properties at various thickness of the SnO$_{2}$ thin film and the effects of PdCI$_{2}$ addition were also investigated. The good result is showed when the thickness is below 1000[.angs.] and the quantity of PdCI$_{2}$ addition is 4[wt%]. The thickness of SnO$_{2}$ thin film was measured by .alpha.-step and Elliopsometer.

  • PDF

Characteristics of CuO doped WO3-SnO2 Thick Film Gas Sensors (CuO가 첨가된 WO3-SnO2 후막 가스센서 특성 연구)

  • Lee, Don-Kyu;Shin, Deuck-Jin;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.956-960
    • /
    • 2010
  • CuO doped $WO_3-SnO_2$ thick film gas sensors were fabricated by screen printing method on alumina substrates and heat-treated at $350^{\circ}C$ in air. The effects of mixing ratio of $WO_3$ with $SnO_2$ on the structural and morphological properties of $WO_3-SnO_2$ were investigated X-ray diffraction and Scanning Electron Microscope. The structural properties of the $WO_3-SnO_2$:CuO thick film by XRD showed that the monoclinic of $WO_3$ and the tetragonal of $SnO_2$ phase were mixed. Nano CuO was coated on the $WO_3-SnO_2$ surface and then the surface of $WO_3$ was coated with $SnO_2$ particles with $1\sim1.5{\mu}m$ in diameters, as confirmed form the SEM image. The sensitivity of the $WO_3-SnO_2$:CuO sensor to 2000 ppm $CO_2$ gas and 50 ppm $H_2S$ gas for the various ratio of $WO_3$ and $SnO_2$ was investigated. The 4 wt% CuO doped $WO_3-SnO_2$(75:25) tkick films showed the highest sensitivity to $CO_2$ gas and $H_2S$ gas.

A Study on the ${AI_2}{O_3}$/ and ${SnO_2}-{AI_2}{O_3}$/AI Thin Film Humidity Sensors (${AI_2}{O_3}$/ AI 및 ${SnO_2}-{AI_2}{O_3}$/AI박막습도 센서에 관한 연구)

  • Jeon, Chun-Saeng
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.159-165
    • /
    • 1994
  • Two kinds of humidity sensor are made, one by anodizing pure aluminum and the other by evaporation Sn02 on the anodized pure alumia film, and their electrical characteristics are investigated in various humidity atmosphere. The change of surface resistance with humidity of $AI_2O_3/AI$ and $SnO_2-AI_2O_3/Al$ sensors are found to be $1.40 \times 10^{-2}\Omega$/RH and $1.56 \times 10^{-2}\Omega$/RH, respectively. The hysteresis phenomena associated with the irreversibility of surface resistance-humidity is less in $SnO_2-AI_2O_3/Al$ sensor than in $AI_2O_3/AI$. It is concluded that $SnO_2-AI_2O_3/Al$ film can be used as humidity sensor in room temperature region because temperature dependence of surface resistance of the film is found to be as $0.56 \times 10^{-2} \Omega /^{\circ}C$ in O~ $20^{\circ}C$ range, where as $2.50 \times 10^{-2} \Omega /^{\circ}C$ in 40-$50^{\circ}C$.

  • PDF