• Title/Summary/Keyword: $SnO_2$ gas-sensor

Search Result 213, Processing Time 0.028 seconds

Development of High Sensitive Integrated Dual Sensor to Detect Harmful Exhaust Gas and Odor for the Automotive (악취분별능력을 가진 자동차용 고기능 듀얼타입 집적형 유해가스 유입차단센서 개발)

  • Chung, Wan-Young;Shim, Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.616-623
    • /
    • 2007
  • A dual micro gas sensor array was fabricated using nano sized $SnO_2$ thin films which had good sensitivities to CO and combustible gases, or $H_2S$ gas for air quality sensors in automobile. The already existed air quality sensor detects oxidizing gases and reducing gases, the air quality sensor(AQS), located near the fresh air inlet detected the harmful gases, the fresh air inlet door/ventilation flap was closed to reduce the amount of pollution entering the vehicle cabin through HVAC(heating, ventilating, and air conditioning) system. In this study, to make $SnO_2$ thin film AQS sensor, thin tin metal layer between 1000 and $2000{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2$, $SnO_2$(pt) and $SnO_2$(+CuO) were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2$(+Pt) and $SnO_2$(CuO) showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.

A Dual Micro Gas Sensor Array with Nano Sized $SnO_2$ Thin Film (나노 박막을 이용한 듀얼 $SnO_2$ 마이크로 가스센서 어레이)

  • Chung Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1641-1647
    • /
    • 2006
  • A dual micro gas sensor way for detecting reducing gas and bad order was fabricated using nano sized $SnO_2$ thin film fabrication method. To make nano-sized thin gas sensitive $SnO_2$ thin rilm, thin tin metal layer $2500{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2,\;SnO_2(+Pt)\;and\;SnO_2(+CuO)$ were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2(Pt)$ and $SnO_2(+CuO)$ showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.

Improvement of Long-term Stability in $SnO_2$ Based Gas Sensor for Monitoring Offensive Odor

  • Park, Jong-Hun;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.304-308
    • /
    • 2000
  • WO$_3$/SnO$_2$ceramics has been suggested as an effective sensing material for monitoring offensive odor or pollutant gases. This work was focussed on improving long-term stability, which has been a principal problem generally taking place in SnO$_2$semiconductor gas sensor. Miniaturized thick film gas sensors were fabricated by screen printing technique. Two types of sensor materials, W doped SnO$_2$and WO$_3$mixed SnO$_2$, were comparatively investigated on those long-term stability and sensitivites to several gases. Small amount of W doping(0.1 mol%) into SnO$_2$largely improved the long-term stability. The W(0.1 mol%) doped SnO$_2$gas sensor had higher sensitivities to both acetone and alcohol compared with WO$_3$(5 wt%) mixed SnO$_2$gas sensor. On the contrary, WO$_3$(5 wt%) mixed SnO$_2$gas sensor showed more superior sensitivity to cigarette smoke due to larger W content.

  • PDF

C3H8 Gas Sensitivity of Pd, Pt-$SnO_2$ Gas Sensor with Varying Impregnation Method (함침 방법의 차이에 따른 Pd, Pt-$SnO_2$의 프로판 가스 감응성 변화)

  • 이종흔;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.638-644
    • /
    • 1990
  • The C3H8 gas sensitivities of SnO2, Pd-SnO2, Pt-SnO2 gas sensor are looked over with the impregnation method of PdCl2, H2PtCl6 solution on SnO2. The Cl- ion due to incomplete decomposition of PdCl2 at 80$0^{\circ}C$ for 30 min decrease the C3H8 gas sensitivity of SnO2, and the sensitivity is increased by the impreganation of H2PtCl6 solution on SnO2 because of its lower decomposition temperature compared with PdCl2. The C3H8 gas sensitivities of Pd-SnO2, Pt-SnO2 impregnated slightly after 1st sintering are larger than that of pure SnO2 sensor because very small amount of Cl- ion exist in sample due to smaller amount of impregnaiton.

  • PDF

Optimization of SnO2 Based H2 Gas Sensor Along with Thermal Treatment Effect (열처리 효과에 따른 SnO2 기반 수소가스 센서의 특성 최적화)

  • Jung, Dong Geon;Lee, Junyeop;Kwon, Jinbeom;Maeng, Bohee;Kim, Young Sam;Yang, Yi Jun;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.348-352
    • /
    • 2022
  • Hydrogen gas (H2) which is odorless, colorless is attracting attention as a renewable energy source in varions applications but its leakage can lead to disastrous disasters, such as inflammable, explosive, and narcotic disasters at high concentrations. Therefore, it is necessary to develop H2 gas sensor with high performance. In this paper, we confirmed that H2 gas detection ability of SnO2 based H2 gas sensor along with thermal treatment effect of SnO2. Proposed SnO2 based H2 gas sensor is fabricated by MEMS technologies such as photolithgraphy, sputtering and lift-off process, etc. Deposited SnO2 thin films are thermally treated in various thermal treatement temperature in range of 500-900 ℃ and their H2 gas detection ability is estimatied by measuring output current of H2 gas sensor. Based on experimental results, fabricated H2 gas sensor with SnO2 thin film which is thermally treated at 700 ℃ has a superior H2 gas detection ability, and it can be expected to utilize at the practical applications.

The effect of additive on $SnO_2$ gas sensor for improving stability ($SnO_2$계 가스 센서의 안정성 향상을 위한 산화물의 첨가 효과)

  • Park, Kwang-Mook;Min, Bong-Ki;Choi, Soon-Don;Nam, Hyo-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.865-868
    • /
    • 2002
  • $SnO_2$ powders were prepare by precipitating $Sn(OH)_4$ from an aqueous solution of $SnCl_4{\cdot}5H_2O$, pH 9.5. The effects of stability and sensitivity of $SnO_2$ thick film sensors added with various amounts, $SiO_2$, $Al_2O_3$, $ZrO_2$, $TiO_2$ have been investigated. It is shown that the 3wt% $Al_2O_3$ or $SiO_2$ can improve the stability of $SnO_2$ gas sensor at an operating temperature of $350^{\circ}C$.

  • PDF

A comparison between thick-film ZnO and $SnO_2$ gas sensors for CO gas detection (CO 검지용 후막형 ZnO와 $SnO_2$ 가스센서의 비교)

  • Kim, Bong-Hee;Yi, Seung-Hwan;Kang, Hee-Bok;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.209-212
    • /
    • 1991
  • Recently, oxide semiconductor gas sensors consisted of n-type semiconductor materials such as $SnO_2$, ZnO and $Fe_2O_3$ have been widely used to detect reducing gases. The advantage of thick-film technology include the possibility of mass-production and automation, that of integrating the sensing element in a hybrid circuit and that of fuctional trimming of the sensor and/or the circuit. which would enable really interchangeable transducers to be prepared. In this paper, we made ZnO and $SnO_2$ gas sensors and investigated the sensitivity to CO gas. Therefore, we compared a ZnO gas sensor with a $SnO_2$ gas sensor.

  • PDF

Catalytic combustion type hydrogen micro gas sensor using thin film heater and nano crystalline SnO2 (나노 결정 SnO2와 백금 박막히터를 이용한 접촉연소식 마이크로 가스센서의 감응특성 연구)

  • Han, Sang-Do;Hong, Dae-Ung;Han, Chi-Hwan;Chun, Il-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.178-182
    • /
    • 2008
  • Planar type micro catalytic combustible gas sensor was developed by using nano crystalline $SnO_2$ Pt thin film as micro heater was deposited by thermal evaporation method on the alumina substrate. The thickness of the Pt heater was around 160 nm. The sensor showed high reliability with prominent selectivity against various gases(Co, $C_3H_8,\;CH_4$) at low operating temperature($156^{\circ}C$). The sensor with nano crystalline $SnO_2$ showed higher sensitivity than that without nano crystalline $SnO_2$. This can be explained by more active adsorption and oxidation of hydrogen by nano crystalline $SnO_2$ particles. The present planar-type catalytic combustible hydrogen sensor with nano crystalline $SnO_2$ is a good candidate for detection of hydrogen leaks.

Characteristics of metal-loaded TiO2/SnO2 thick film gas sensor for detecting acetonitrile (아세토나이트릴 가스 검지를 위한 센스의 제작 및 특성)

  • Park, Young-Ho;Lee, Chang-Seop
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.2
    • /
    • pp.23-29
    • /
    • 2009
  • This study investigated sensitivity of the gas sensor to chemical weapons with the sensor material doped with catalysts. The nano-sized SnO2 powder mixed with metal oxides (TiO2) was doped with transition metals(Pt, Pd and In). Thick film of nano-sized SnO2 powder with TiO2 was prepared by screen-printing method onto Al2O3 substrates with platinum electrode and chemical precipitation method. The physical and chemical properties of sensor material were investigated by SEM/EDS, XRD and BET analyzers. The measured sensitivity to simulant toxic gas is defined as the percentage of resistance of value equation, [(Ra-Rg)/$Ra\;{\times}100$)], that of the resistance(Ra) of SnO2 film in air and the resistance(Rg) of SnO2 film in acetonitrile gas. The best sensitivity and selectivity of these thick film were shown with 1wt.% Pd and 1wt.% TiO2 for acetonitile gas at the operating temperature of $250^{\circ}C$.

  • PDF

Fabrication and Characteristics of High-performance Doped-$SnO_2$ Thin Films for Explosive Gas Sensor

  • Chwa, Sang-Ok;Park, Hee-Chan;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.2 no.2
    • /
    • pp.83-88
    • /
    • 1996
  • Long term stability, sensitization in air, and gas sensing behaviors of tin oxide films were investigated with doping of antimony and palladium. The tin oxide films were prepared on a Corning glass by reactive rf sputtering method and tested for detection of hydrogen gas. Sb-doping improved a long-term stability in the base resistance of $SnO_2$ film sensor. A small amount of Pd doping caused the optimum sensor operating temperature to reduce and also enhanced the gas sensitivity, compared with the undoped $SnO_2$ film. Gas sensitivity depended largely on the film thickness. The important sensitization reactions for sensor operating were $(O_{2ads})+e^-\;{\rightarrow}\;2(O_{ads})^-$ on the surface of $SnO_2$ film at elevated temperature in air and a followed reaction of hydrogen atoms with $(O_{ads})^-$ ions.

  • PDF