• Title/Summary/Keyword: $Si_2N_2O$ ceramic

Search Result 324, Processing Time 0.022 seconds

Study on the Properties of $B_2O_3$-$SiO_2$and $Al_2O_3$-$SiO_2$Coating Films by the Sol-Gel Method (Sol-Gel법으로 제조한 $B_2O_3$-$SiO_2$$Al_2O_3$-$SiO_2$ 박막의 특성에 관한 연구)

  • 황규석;김병훈;최석진
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.583-588
    • /
    • 1990
  • Glass films in the binary system B2O3-SiO2 and Al2O3-SiO2 were prepared on soda-lime-silica slide glass by the dip-coating technique from TEOS and boric acid or aluminum nitrate. Thickness of the films varying with viscosity and withdrawal speed were measured and effect of composition and firing temperature on the properties such as transmittance and refractive index were investigated. nM2O3.(100-n)SiO2(M=B or Al) films containing up to 20mol% B2O3 and 40mol% Al2O3 were transparent. Maximum transmittance at visible range were obtained for the sample containing 15mol% Ba2O3 and 32.5mol% Al2O3 and heat-treated at 50$0^{\circ}C$, respectively. Refractive index of the film containing 15mol% B2O3 was mininum in the B2O3-SiO2 binary system and minimal refractive index was appeared at the film containing 32.5mol% Al2O3. In IP spectra, addition of B2O3 were increased absorption peak intensity of B-O and Si-O-B bond and addition of Al2O3 were decreased absorption peak intensity of Si-O bond, respectively.

  • PDF

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1996.11a
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

Tribological Properties of Hot Pressed $SiC/Si_3N_4$ Composites (가압소결 $SiC/Si_3N_4$ 복합체의 마찰마모특성)

  • Baik, Yong-Hyuck;Choi, Woong;Park, Yong-Kap
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1102-1107
    • /
    • 1999
  • SiC-Si3N4 composites were prepared by mixing $\alpha$-Si3N4 powder to $\alpha$-SiC powder in the range of 10 to 30 vol% with 10vol% interval. 6wg% Al2O3 and 6wt% Y2O3 were respectively added as sintering aids. Hot pressing was performed at 1,80$0^{\circ}C$ for 1 hour with 25 MPa pressure. In the case of adding 20vol% of $\alpha$-Si3N4 powder the relative density to theoretical value and the flexural strength were 99.1% and 34,420 MPa respectively and the worn amount was 2.09$\times$10-3 mm2 which were the highest values in the all range of he composition. Although the composite containig 10 vol% of $\alpha$-Si3N4 powder showed the highest fracture toughness(KIC) of 4.65MN/m3/2 the reduction of the wear resistance in this composite is likely to be affected by the homogeneity and the uniformity of the grain coalescence and growth during the sintering process.

  • PDF

Effect of MgO-CaO-Al2O3-SiO2 Glass Additive Content on Properties of Aluminum Nitride Ceramics (MgO-CaO-Al2O3-SiO2 glass 첨가제 함량이 AlN의 물성에 미치는 영향)

  • Kim, Kyung Min;Baik, Su-Hyun;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.494-500
    • /
    • 2018
  • In this study, the effect of the content of $MgO-CaO-Al_2O_3-SiO_2$ (MCAS) glass additives on the properties of AlN ceramics is investigated. Dilatometric analysis and isothermal sintering for AlN compacts with MCAS contents varying between 5 and 20 wt% are carried out at temperatures ranging up to $1600^{\circ}C$. The results showed that the shrinkage of the AlN specimens increases with increasing MCAS content, and that full densification can be obtained irrespective of the MCAS content. Moreover, properties of the AlN-MCAS specimens such as microhardness, thermal conductivity, dielectric constant, and dielectric loss are analyzed. Microhardness and thermal conductivity decrease with increasing MCAS content. An acceptable candidate for AlN application is obtained: an AlN-MCAS composite with a thermal conductivity over $70W/m{\cdot}K$ and a dielectric loss tangent (tan ${\delta}$) below $0.6{\times}10^{-3}$, with up to 10 wt% MCAS content.

High Strength $Si_3N_4/SiC$ Structural Ceramics (고강도 $Si_3N_4/SiC$ 구조세라믹스에 관한 연구)

  • 김병수;김인술;장윤식;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.12
    • /
    • pp.999-1006
    • /
    • 1993
  • Si3N4(p)-SiC(p) composites were prepared by gas pressure sintering at 190$0^{\circ}C$ for 1 hour. $\alpha$-SiC with average particle size of 0.48${\mu}{\textrm}{m}$ were dispersed from zero to 50vol% in $\alpha$-Si3N4 with average particle size of 0.5${\mu}{\textrm}{m}$. Y2O3-Al2O3 system was used as sintering aids. When 10vol% of SiC was added to Si3N4, optimum mechanical properties were observed; relative density of 98.8%, flextural strength of 930MPa, fracture toughness of 5.9MPa.m1/2 and hardness value of 1429kg/$\textrm{mm}^2$. Grain growth of $\beta$-Si3N4 was inhibited as the amount of added SiC was increased. SiC particles were found inside the $\beta$-Si3N4 intragrains in case of 10, 20 and 30vol%SiC added composites.

  • PDF

Mechanical Properties of Silicon Carbide-Silicon Nitride Composites Sintered with Yttrium Aluminum Garnet (YAG상 첨가 탄화규소-질화규소 복합재료의 기계적 특성)

  • 이영일;김영욱;최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.799-804
    • /
    • 1999
  • Composites of SiC-Si3N4 consisted of uniformly distributed elongated $\beta$-Si3N4 grains and equiaxed $\beta$-SiC grains were fabricated with $\beta$-SiC,. $\alpha$-Si3N4 Al2O3 and Y2O3 powders. By hot-pressing and subsequent annelaing elongated $\beta$-Si3N4 grains were grown via$\alpha$longrightarrow$\beta$ phase transformation and equiaxed $\beta$-Si3N4 composites increased with increasing the Si3N4 content owing to the reduced defect size and enhanced crack deflection by elongated $\beta$-Si3N4 grains and the grain boundary strengthening by nitrogen incorporation. Typical flexural strength and fracture toughness of SiC-40 wt% Si3N4 composites were 783 MPa and 4.2 MPa.m1/2 respectively.

  • PDF

Dispersion of Silicon Nitride Particles and Sintering Additives of AlN and Nd$_2$O$_3$ in Nonaqueous Suspending Media (비수계분산매체에서 질화규소와 소결첨가제 AlN 및 Nd$_2$O$_3$의 분산)

  • 김재원;백운규;윤경진
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.210-219
    • /
    • 1999
  • The fundamental dispersion property of Si2N4 and a combination of AlN and Nd2O3 as sintering additives in a variety of organic solvents such as alcohols, hydrocarbons, ketones, and ethers was investigated. The stabilization mechanism and interaction between organic functional groups of the various organic additives were studied to clarify the dispersibility of the ceramic particles in the nonaqueous suspending medium. characterization of the suspensions was based mainly on electrokinetic sonic amplitude(ESA) measurements and the flow curves obtained from the rheological studies as well as estimated Hamaker constants. It was found that the contribution of electrostatic repulsive forces to the Si3N4, AlN and Nd2O3 stabilization in organic media is appreciably greater than anticipated and is dependent on the physicochemical properties of organic solvents.

  • PDF

Characteristics of Oxynitride MOS Capacitor Prepared in $N_2O$ Atmosphere of Furnace (Furnace의 $N_2O$ 분위기에서 성장시킨 Oxynitride MOS 캐패시터 특성)

  • 박진성;문종하;이은구
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1241-1245
    • /
    • 1995
  • Ultrathin oxynitride (SiOxNy) films, 8nm thick, were formed on Si(100) in furnace using O2 and N2O as reactant gas. Compared with conventional furnace grown oxide, oxynitride dielectrics show better characteristics of Qbd and I-V, and less flat-band voltage shift. Excellent diffusion barrier property to dopant (BF2) is also confirmed.

  • PDF

Cutting characteristic of SiC-$Si_3N_4$ ceramic cutting tools (SiC-$Si_3N_4$계 세라믹 절삭공구의 절삭특성 평가)

  • 박준석;김경재;권원태;김영욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.898-901
    • /
    • 2000
  • It is known that Si3N4 ceramic insert has less hardness than Al2O3 ceramic insert. But Si3N4 ceramic insert has not only high toughness and strength but also low thermal expansion coefficient, which makes it has longer tool life under thermal stress condition. In this study, commercial Si3N4 ceramic insert and home-made SiC-Si3N4 ceramic insert which has different sintering time and chemical composition is tested under various cutting conditions. The experimental result is compared in terms of tool life and cutting force. Generally, As the cutting speed and the feed rate increased, the cutting force and the flank wear increased too. The performance of SiC-Si3N4 ceramic insert shows the possibility to be a new ceramic tool.

  • PDF

Hot Pressing and Spark Plasma Sintering of AlN-SiC-TiB2 Systems using Boron and Carbon Additives (보론과 카본 조제를 사용한 AlN-SiC-TiB2계의 고온가압 및 Spark Plasma Sintering)

  • Lee, Sea-Hoon;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.467-471
    • /
    • 2009
  • Effects of boron and carbon on the densification and thermal decomposition of an AlN-SiC-$TiB_2$ system were investigated. $SiO_2$ was mostly removed by the addition of carbon, while $Al_2O_3$ formed $Al_4O_4C$ and promoted the densification of the systems above $1850^{\circ}C$. Rather porous specimens were obtained without the additives after hot pressing at $2100^{\circ}C$, while densification was mostly completed at $2000^{\circ}C$ by using the additives. The sintering temperature decreased further to $1950^{\circ}C$ by applying spark plasma sintering. The additives promoted the shrinkage of AlN by forming a liquid phase which was originated from the carbo- and boro-thermal reduction of $Al_2O_3$ and AlN.