• Title/Summary/Keyword: $Si_2N_2O$ ceramic

Search Result 327, Processing Time 0.021 seconds

Electrical Properties of BaTiO3-based 0603/0.1µF/0.3mm Ceramics Decoupling Capacitor for Embedding in the PCB of 10G RF Transceiver Module

  • Park, Hwa-sun;Na, Youngil;Choi, Ho Joon;Suh, Su-jeong;Baek, Dong-Hyun;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1638-1643
    • /
    • 2018
  • Multi-layer ceramic capacitors as decoupling capacitor were fabricated by dielectric composition with a high dielectric constant. The fabricated decoupling capacitors were embedded in the PCB of the 10G RF transceiver module and evaluated for the characteristics of electrical noise by the level of AC input voltage. In order to further improve the electrical properties of the $BaTiO_3$ based composite, glass frit, MgO, $Y_2O_3$, $Mn_3O$, $V_2O_5$, $BaCO_3$, $SiO_2$, and $Al_2O_3$ were used as additives. The electrical properties of the composites were determined by various amounts of additives and optimum sintering temperature. As a result of the optimized composite, it was possible to obtain a density of $5.77g/cm^3$, a dielectric constant of 1994, and an insulation resistance of $2.91{\times}10^{12}{\Omega}$ at an additive content of 5wt% and a sintering temperature of $1250^{\circ}C$. After forming a $2.5{\mu}m$ green sheet using the doctor blade method, a total of 77 layers were laminated and sintered at $1180^{\circ}C$. A decoupling capacitor with a size of $0.6mm(W){\times}0.3mm(L){\times}0.3mm(T)$ (width, length and thickness, respectively) and a capacitance of 100 nF was embedded using a PCB process for the 10G RF Transceiver modules. In the range of AC input voltage 400mmV @ 500kHz to 2200mV @ 900kHz, the embedded 10G RF Transceiver modules evaluated that it has better electrical performance than the non-embedded modules.

The advancing techniques and sputtering effects of oxide films fabricated by Stationary Plasma Thruster (SPT) with Ar and $O_2$ gases

  • Jung Cho;Yury Ermakov;Yoon, Ki-Hyun;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.216-216
    • /
    • 1999
  • The usage of a stationary plasma thruster (SPT) ion source, invented previously for space application in Russia, in experiments with surface modifications and film deposition systems is reported here. Plasma in the SPT is formed and accelerated in electric discharge taking place in the crossed axial electric and radial magnetic fields. Brief description of the construction of specific model of SPT used in the experiments is presented. With gas flow rate 39ml/min, ion current distributions at several distances from the source are obtained. These was equal to 1~3 mA/$\textrm{cm}^2$ within an ion beam ejection angle of $\pm$20$^{\circ}$with discharge voltage 160V for Ar as a working gas. Such an extremely high ion current density allows us to obtain the Ti metal films with deposition rate of $\AA$/sec by sputtering of Ti target. It is shown a possibility of using of reactive gases in SPT (O2 and N2) along with high purity inert gases used for cathode to prevent the latter contamination. It is shown the SPT can be operated at the discharge and accelerating boltages up to 600V. The results of presented experiments show high promises of the SPT in sputtering and surface modification systems for deposition of oxide thin films on Si or polymer substrates for semiconductor devices, optical coatings and metal corrosion barrier layers. Also, we have been tried to establish in application of the modeling expertise gained in electric and ionic propulsion to permit numerical simulation of additional processing systems. In this mechanism, it will be compared with conventional DC sputtering for film microstructure, chemical composition and crystallographic considerations.

  • PDF

Recent Overview on Power Semiconductor Devices and Package Module Technology (차세대 전력반도체 소자 및 패키지 접합 기술)

  • Kim, Kyoung-Ho;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In these days, importance of the power electronic devices and modules keeps increasing due to electric vehicles and energy saving requirements. However, current silicon-based power devices showed several limitations. Therefore, wide band gap (WBG) semiconductors such as SiC, GaN, and $Ga_2O_3$ have been developed to replace the silicon power devices. WBG devices show superior performances in terms of device operation in harsh environments such as higher temperatures, voltages and switching speed than silicon-based technology. In power devices, the reliability of the devices and module package is the critically important to guarantee the normal operation and lifetime of the devices. In this paper, we reviewed the recent trends of the power devices based on WBG semiconductors as well as expected future technology. We also presented an overview of the recent package module and fabrication technologies such as direct bonded copper and active metal brazing technology. In addition, the recent heat management technologies of the power modules, which should be improved due to the increased power density in high temperature environments, are described.

A novel approach for rice straw agricultural waste utilization: Synthesis of solid aluminosilicate matrices for cesium immobilization

  • Panasenko, A.E.;Shichalin, O.O.;Yarusova, S.B.;Ivanets, A.I.;Belov, A.A.;Dran'kov, A.N.;Azon, S.A.;Fedorets, A.N.;Buravlev, I. Yu;Mayorov, V. Yu;Shlyk, D. Kh;Buravleva, A.A.;Merkulov, E.B.;Zarubina, N.V.;Papynov, E.K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3250-3259
    • /
    • 2022
  • A new approach to the use of rice straw as a difficult-to-recycle agricultural waste was proposed. Potassium aluminosilicate was obtained by spark plasma sintering as an effective material for subsequent immobilization of 137Cs into a solid-state matrix. The sorption properties of potassium aluminosilicate to 137Cs from aqueous solutions were studied. The effect of the synthesis temperature on the phase composition, microstructure, and rate of cesium leaching from samples obtained at 800-1000 ℃ and a pressure of 25 MPa was investigated. It was shown that the positive dynamics of compaction was characteristic of glass ceramics throughout the sintering. Glass ceramics RS-(K,Cs)AlSi3O8 obtained by the SPS method at 1000 ℃ for 5 min was characterized by a high density of ~2.62 g/cm3, Vickers hardness ~ 2.1 GPa, compressive strength ~231.3 MPa and the rate of cesium ions leaching of ~1.37 × 10-7 g cm-2·day-1. The proposed approach makes it possible to safe dispose of rice straw and reduce emissions into the atmosphere of microdisperse amorphous silica, which is formed during its combustion and causes respiratory diseases, including cancer. In addition, the obtained is perspective to solve the problem of recycling long-lived 137Cs radionuclides formed during the operation of nuclear power plants into solid-state matrices.

Preparation and Gas Permeation Performance of Pd-Ag-Cu Hydrogen Separation Membrane Using α-Al2O3 Support (α-Al2O3 지지체를 이용한 Pd-Ag-Cu 수소 분리막의 제조 및 기체투과 성능)

  • Sung Woo Han;Min Chang Shin;Xuelong Zhuang;Jae Yeon Hwang;Min Young Ko;Si Eun Kim;Chang Hoon Jung;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.50-57
    • /
    • 2024
  • In this experiment, Pd-Ag-Cu membrane was manufactured using electroless plating on an α-Al2O3 support. Pd, Ag and Cu were each coated on the surface of the support through electroless plating and heat treatment was performed for 18 h at 500℃ in H2 in the middle of electroless plating to form Pd alloy. The surface of the Pd-Ag-Cu membrane was observed through Scanning Electron Microscopy (SEM), and the thickness of the Pd membrane was measured to be 7.82 ㎛ and the thickness of the Pd-Ag-Cu membrane was measured to be 3.54 ㎛. Energy dispersive X-ray spectroscopy and X-ray diffraction analysis confirmed the formation of a Pd-Ag-Cu alloy with a composition of Pd-78wt%, Ag-8.81wt% and Cu-13.19wt%. The gas permeation experiment was conducted under the conditions of 350~450℃ and 1~4 bar in H2 single gas and H2/N2 mixed gas. The maximum H2 flux of the hydrogen separation membrane measured in H2 single gas is 74.16 ml/cm2·min at 450℃ and 4 bar for the Pd membrane and 113.64 ml/cm2·min at 450℃ and 4 bar for the Pd-Ag-Cu membrane. In the case of the separation factor measured in H2/N2 mixed gas, separation factors of 2437 and 11032 were measured at 450℃ and 4 bar.

Effects of Annealing Condition on Properties of ITO Thin Films Deposited on Soda Lime Glass having Barrier Layers (Barrier층을 갖는 Soda lime glass 기판위에 증착된 ITO박막의 Annealing 조건에 따른 영향)

  • Lee, Jung-Min;Choi, Byung-Hyun;Ji, Mi-Jung;Park, Jung-Ho;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.66-66
    • /
    • 2008
  • Most of the properties of ITO films depend on their substrate nature, deposition techniques and ITO film composition. For the display panel application, it is normally deposited on the glass substrate which has high strain point (>575 degree) and must be deposited at a temperature higher than $250^{\circ}C$ and then annealed at a temperature higher than $300^{\circ}C$ in order to high optical transmittance in the visible region, low reactivity and chemical duration. But the high strain point glass (HSPG) used as FPDs is blocking popularization of large sizes FPDs because it is more expensive than a soda lime glass (SLG). If the SLG could be used as substrate for FPDs, then diffusion of Na ion from the substrate occurs into the ITO films during annealing or heat treatment on manufacturing process and it affects the properties. Therefore proper care should be followed to minimize Na ion diffusion. In this study, we investigate the electrical, optical and structural properties of ITO films deposited on the SLG and the Asahi glass(PD200) substrate by rf magnetron sputtering using a ceramic target ($In_2O_3:SnO_2$, 90:10wt.%). These films were annealed in $N_2$ and air atmosphere at $400^{\circ}C$ for 20min, 1hr, and 2hrs. ITO films deposited on the SLG show a high electrical resistivity and structural defect as compared with those deposited on the PD200 due to the Na ion from the SLG on diffuse to the ITO film by annealing. However these properties can be improved by introducing a barrier layer of $SiO_2$ or $Al_2O_3$ between ITO film and the SLG substrate. The characteristics of films were examined by the 4-point probe, FE-SEM, UV-VIS spectrometer, and X-ray diffraction. SIMS analysis confirmed that barrier layer inhibited Na ion diffusion from the SLG.

  • PDF

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.