• 제목/요약/키워드: $SiO_2$Microstructure

검색결과 521건 처리시간 0.021초

Ta2O5 고유전박막의 미세조직과 열적안정성 (Microstructure and Thermal Stability of High Permittivity Ta2O5)

  • 민석홍;정병길;최재호;김병성;김대용;신동우;조성래;김기범
    • 한국재료학회지
    • /
    • 제12권10호
    • /
    • pp.814-819
    • /
    • 2002
  • TiN and TaN films as electrode materials of reactive sputtered $Ta_2$$O_{5}$ were prepared by sputtering to compare their thermal stabilities with $Ta_2$$O_{5}$ The microstructural change of $Ta_2$$O_{5}$ films with annealing was also investigated. As- deposited $Ta_2$$O_{5}$ film on $SiO_2$ was amorphous and annealing of 80$0^{\circ}C$ for 30 min made it transform to $\beta$-Ta$_2$O$_{5}$ crystalline which contains amorphous particles with the size of a few nm. Crystallization temperature of Ta$_2$Ta_2$$O_{5}$ on TaN is higher than that on TiN electrode. The interface between TaN and Ta$_2$O$_{5}$ maintained stably even after vacuum annealing up to $800^{\circ}C$ for 1 hr, but TiN interacted with $Ta_2$$_O{5}$ and so interdiffusion between TiN and $Ta_2$$O_{5}$ occurred by vacuum annealing of 80$0^{\circ}C$ for 1 hr. It indicates that TaN is thermally more stable with $Ta_2$$O_{5}$ than TiN.N.

Femto Second Laser Pulse에 의한 유리의 결정화 및 기계적 특성 (Mechanical Property and Crystallization of Glass by Femtosecond Laser Pulses)

  • 차재민;문필용;김동현;박성제;조성학;류봉기
    • 한국세라믹학회지
    • /
    • 제42권6호
    • /
    • pp.377-383
    • /
    • 2005
  • Generally, the strength achieved of glass-ceramics is higher as is the fracture toughness, as compared with the original glass. This improvement is due to the microstructure consisting of very small crystals. In this study, Ag-doped $45SiO_2-24CaO-24Na_2O-4P_2O_5$ glasses were irradiated to strengthen by the crystallization using Femto second laser Pulses. Through the UV/VIS spectroscope, XRD, Nano-indenter and SEM etc., heat-treated and irradiation of laser pulses without heat-treated samples were analyzed. Two kinds of samples, heat-treated and laser irradiated without heat-treated samples, showed the peaks in the same wavelength near 360 nm. Especially, samples irradiated by 140 mW laser with XYZ stage having at the rate of 100$\~$l000 $\mu$m/s had the largest absorption peak among them, and heat-treated samples was shown lower absorption range than over 90 mW laser irradiated samples. Moreover, samples irradiated by laser had higher values ($4.4\~4.56{\times}10^{-3}(Pa)$) of elastic modulus which related with strength of glass than values of heat-treated samples and these are 1.2$\~$1 .5 times higher values than them of mother glass.

플라이애쉬와 고로슬래그 미분말을 혼입한 지오폴리머 페이스트의 반응특성 분석 (Reaction Characteristics of Geopolymer Paste Incorporating Fly-ash and GGBS)

  • 신기수;박기봉
    • 한국건축시공학회지
    • /
    • 제20권4호
    • /
    • pp.321-330
    • /
    • 2020
  • 지오폴리머의 반응성은 원재료의 구성성분 및 Si/Al비, Na/Al비, 물-결합재비, 비정질 요소 등을 고려하여 명확한 메커니즘을 규명하는 것은 매우 중요하다. 따라서 원재료 및 알칼리 활성화제의 구성성분을 고려한 %Na2O, Ms는 반응성을 결정하는 중요한 요소가 된다. 하지만 다수의 연구에서는 알칼리 활성화제의 농도와 양생 조건 등의 기본적인 요소만을 고려하는 한계점을 나타내고 있다. 따라서 본 연구에서는 %Na2O, Ms 및 고로슬래그 미분말의 혼입량에 따른 지오폴리머 페이스트의 강도특성, 반응열, 길이변화, 미세구조 분석을 실시하였다.

Effects of Molding Pressure and Sintering Temperature on Properties of Foamed Glass without Blowing Agent

  • Kim, EunSeok;Kim, Kwangbae;Lee, Hyeryeong;Kim, Ikgyu;Song, Ohsung
    • 한국세라믹학회지
    • /
    • 제56권2호
    • /
    • pp.178-183
    • /
    • 2019
  • A process of fabricating the foamed glass that has closed pores with 8 ~ 580 ㎛ sizes without a blowing agent by sintering 10 ㎛ boron-free glass powder composed of CaO, MgO, SO3, Al2O3-83 wt% SiO2 at a molding pressure of 0 ~ 120 MPa and a sintering temperature of 750 ~ 1000℃ was investigated. To analyze the glass transition temperature of glass powder, thermogravimetric analysis-differential thermal analysis (TGA-DTA) method were used. The microstructure and pore size of foamed glass were examined using the optical microscopy and field emission scanning electron microscopy (FE-SEM). For the thermal diffusivity and color of the fabricated samples, a heat flow meter and ultraviolet-visible-near-infrared (UV-VIS-NIR)-colormetry were used, respectively. In the TGA-DTA result, the glass transition temperature of glass powder was confirmed to be 626℃. In the microstructure result, closed pores of 7 ~ 20 ㎛ were formed at 750 ~ 900℃, and they were not affected by the molding pressure and sintering temperature. However, at 1,000℃, when there was 0 MPa molding pressure, closed pores of 580 ㎛ were confirmed, and the pore size decreased as the molding pressure increased. Moreover, at a molding pressure of 30 MPa or higher, closed pores of approximately 400 ㎛ were formed. The porosity showed an increasing trend of smaller molding pressure and larger sintering temperature, and it was controllable in the range of 5.69 ~ 68.45%. In the thermal diffusivity result, there was no change according to the molding pressure, and, by increasing the sintering temperature, up to 0.115 W/m·K could be obtained. The Lab color index (CIE-Lab) results all showed a similar translucent white color regardless of molding pressure and sintering temperature. Therefore, based on the foamed glass without boron and blowing agent, it was confirmed that white foamed glass, which has closed pores of 8 ~ 580 ㎛ and a thermal diffusivity characteristic of 0.115 W/m·K, can be fabricated by changing the molding pressure and sintering temperature.

Al3+와 Y3+ 동시치환 SnO2 투명전극 박막의 전기적 특성 (Electrical Properties of Al3+ and Y3+ Co-doped SnO2 Transparent Conducting Films)

  • 김근우;서용준;성창훈;박근영;조호제;허시내;구본흔
    • 한국전기전자재료학회논문지
    • /
    • 제25권10호
    • /
    • pp.805-810
    • /
    • 2012
  • Transparent conducting oxides (TCOs) have wide range of application areas in transparent electrode for display devices, Transparent coating for solar energy heat mirrors, and electromagnetic wave shield. $SnO_2$ is intrinsically an n-type semiconductor due to oxygen deficiencies and has a high energy-band gap more than 3.5 eV. It is known as a transparent conducting oxide because of its low resistivity of $10^{-3}{\Omega}{\cdot}cm$ and high transmittance over 90% in visible region. In this study, co-doping effects of Al and Y on the properties of $SnO_2$ were investigated. The addition of Y in $SnO_2$ was tried to create oxygen vacancies that increase the diffusivity of oxygen ions for the densification of $SnO_2$. The addition of Al was expected to increase the electron concentration. Once, we observed solubility limit of $SnO_2$ single-doped with Al and Y. $\{(x/2)Al_2O_3+(x/2)Y_2O_3\}-SnO_2$ was used for the source of Al and Y to prevent the evaporation of $Al_2O_3$ and for the charge compensation. And we observed the valence changes of aluminium oxide because generally reported of valence changes of aluminium oxide in Tin - Aluminium binary system. The electrical properties, solubility limit, densification and microstructure of $SnO_2$ co-doped with Al and Y will be discussed.

PNN-PZT 세라믹스의 저온 소결 및 전기적 특성 평가 (Low Temperature Sintering of PNN-PZT Ceramics and Its Electrical Properties)

  • 이명우;김성진;윤만순;류성림;권순용
    • 한국전기전자재료학회논문지
    • /
    • 제21권12호
    • /
    • pp.1077-1082
    • /
    • 2008
  • To fabricate a multi-layered piezoelectrics/electrodes structure, the piezoelectrics should be sintered at the temperature lower than $950^{\circ}C$ to use the silver electrode, which is cheaper than the electrodes containing noble metals such as Pd and Pt. Therefore, in this study, we modified the composition of $Pb(Zr,Ti)O_3$-based material as $(Pb_{0.98}Cd_{0.02})(Ni_{1/3}Nb_{2/3})_{0.25}Zr_{0.35}Ti_{0.4}O_3$ to lower the sintering temperature and to improve the piezoelectric properties. Small amount of $MnCO_3$, $SiO_2$, and $Pb_3O_4$ were also added to lower the sintering temperature of the ceramic. The prepared raw powders were mixed by using a ball mill for 24 hours. And then the mixed powders were calcinated for 2 hours at $800^{\circ}C$. The calcinated powders were again crushed with the ball mill for 72 hours. The final powders were pressed for making the shape of ${\emptyset}15\;mm$ disk. The disk-type samples were sintered at temperature range of $850{\sim}950^{\circ}C$. The crystal phases of the sintered specimens were perovskite structure without secondary phases. All of the measured electrical properties such as electromechanical coupling coefficients ($k_p$), mechanical quality factors ($Q_m$), and piezoelectric charge constants ($d_{33}$) were decreased with decreasing the sintering temperatures. The electrical properties measured at the sample sintered at $950^{\circ}C$ were 54% of $k_p$, 503 of $Q_m$, and 390 pC/N of $d_{33}$, respectively. These properties were considered to be fairly good for the application of multi-layered piezoelectric generators or actuators.

MOCVD 방법에 의한 Si 기판위 GaN 나노선의 성장 (GaN Nanowire Growth on Si Substrate by Utilizing MOCVD Methods)

  • 우시관;신대근;오병성;이형규
    • 한국전기전자재료학회논문지
    • /
    • 제23권11호
    • /
    • pp.848-853
    • /
    • 2010
  • We have grown GaN nanowires by the low pressure MOCVD method on Ni deposited oxidized Si surface and have established optimum conditions by observing surface microstructure and its photoluminescence. Optimum growth temperature of $880^{\circ}C$, growth time of 30 min, TMG source flow rate of 10 sccm have resulted in dense nanowires on the surface, however further increase of growth time or TMG flow rate has not increased the length of nanowire but has formed nanocrystals. On the contrary, the increase of ammonia flow has increased the length of nanowires and the coverage of nanowire over the surface. The shape of nanowire is needle-like with a Ni droplet at its tip; the length is tens of micron with more than 40 nm in diameter. Low temperature photoluminescence obtained from the sample at optimum growth condition has revealed several peaks related to exciton decay near band-edge, but does not show any characteristic originated from one dimensional quantum confinement. Strong and broad luminescence at 2.2 eV is observed from dense nanowire samples and this suggests that the broad band is related to e-h recombination at the surface state in a nanowire. The current result is implemented to the nanowire device fabrication by nanowire bridging between micro-patterned neighboring Ni catalysis islands.

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders

  • Vance, Kirk;Aguayo, Matthew;Dakhane, Akash;Ravikumar, Deepak;Jain, Jitendra;Neithalath, Narayanan
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권4호
    • /
    • pp.289-299
    • /
    • 2014
  • Alkali-activated slag concretes are being extensively researched because of its potential sustainability-related benefits. For such concretes to be implemented in large scale concrete applications such as infrastructural and building elements, it is essential to understand its early and long-term performance characteristics vis-a'-vis conventional ordinary portland cement (OPC) based concretes. This paper presents a comprehensive study of the property and performance features including early-age isothermal calorimetric response, compressive strength development with time, microstructural features such as the pore volume and representative pore size, and accelerated chloride transport resistance of OPC and alkali-activated binder systems. Slag mixtures activated using sodium silicate solution ($SiO_2$-to-$Na_2O$ ratio or $M_s$ of 1-2) to provide a total alkalinity of 0.05 ($Na_2O$-to-binder ratio) are compared with OPC mixtures with and without partial cement replacement with Class F fly ash (20 % by mass) or silica fume (6 % by mass). Major similarities are noted between these binder systems for: (1) calorimetric response with respect to the presence of features even though the locations and peaks vary based on $M_s$, (2) compressive strength and its development, (3) total porosity and pore size, and (4) rapid chloride permeability and non-steady state migration coefficients. Moreover, electrical impedance based circuit models are used to bring out the microstructural features (resistance of the connected pores, and capacitances of the solid phase and pore-solid interface) that are similar in conventional OPC and alkali-activated slag concretes. This study thus demonstrates that performance-equivalent alkali-activated slag systems that are more sustainable from energy and environmental standpoints can be proportioned.

연속주조용 Porous Nozzle의 기공율이 내구성에 미치는 영향 (Effects of Porosity on Durability in a Porous Nozzle for Continuous Casting)

  • 윤상현;조문규;정두화;이희수
    • 대한금속재료학회지
    • /
    • 제48권7호
    • /
    • pp.625-629
    • /
    • 2010
  • This study investigates the effects of porosity on the thermal stability and the thermal shock resistance of a porous nozzle used for blowing an inert gas. The samples of $Al_2O_3-SiO_2-ZrO_2$ system, which had the apparent porosity of 16~30% and bulk density of $2.6{\sim}3.2g/cm^3$, were prepared by adding different graphite contents (5, 10, 20 wt%) as a pore-forming agent. The thermal shock test was conducted at ${\Delta}T=500$, 1000, and $1400^{\circ}C$ also and the thermal stability was also carried out at 1550, 1600, and $1650^{\circ}C$ for 5 hrs. The specimen contained 10 wt% graphite had uniform pore size distribution, whereas the specimen with 20 wt% graphite showed non-uniform pore size distribution. As a result of thermal shock test, the specimen containing 10 wt% graphite appears to have higher mechanical strength than the other specimens (5, 20 wt% graphite). Both the 5 wt% and 20 wt% graphite specimens developed a non-uniform pore size distribution and cracks that were generated by intensive thermal stress.