• Title/Summary/Keyword: $SiO_2$Microstructure

Search Result 521, Processing Time 0.027 seconds

Effect of amount of magnesia on wear behavior of silicon nitride (마그네시아 양이 질화규소의 마모거동에 미치는 영향)

  • 김성호;이수완;엄호성;정용선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.231-239
    • /
    • 1999
  • The microstructure of ceramic composite has been found to be governed by the type and amount of the secondary phase, the sintering aid, and the sintering conditions such as sintering temperature, pressure and holing time. Moreover, tribological properties are strongly dependent on microsturcture of composite and operating conditions. In this study, silicon nitride with various amount of magnesia as a sintering aid were prepared and sintered by a hot pressing (HP) technique. Microstructure, mechanical properties (hardness, strength, and fracture toughness), and tribological properties in different environments of $Si_{3}N_{4}$ (in air, water, and paraffine oil) were investigated as a function of MgO content in $Si_{3}N_{4}$. As increasing the amount of MgO in $Si_{3}N_{4}$, the glassy phase in the grain boundaries enlarged the $\beta$-phase elongated grains, and also degraded the Hertzian contact damage resistance. Tribological behaviors in air was seemed to be determined by fracture toughness of $Si_{3}N_{4}$, and those in water and paraffin oil was seemed to be determined by hardness as well as strength. Since glassy grain-boundary phase (MgO) in $Si_{3}N_{4}$ expected to be reacted with water during sliding, such tribochemical reaction reduced wear. In paraffin oil under a higher applied load, the initial sliding dominated wear rate because of Hertzian contact damage.

  • PDF

Fabrication and Bi-Sr-Ca-Cu-O Superconducting Thin Films by RF Magnetron Sputtering (RF-Magnetron Sputtering에 의한 Bi-Sr-Ca-Cu-O 초전도 박막의 제조)

  • 홍철민;박현수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.227-233
    • /
    • 1994
  • The Bi-Sr-Ca-Cu-O thin films were deposited by RF-magnetron sputtering method on Si(P-111) wafer without a buffer layer and annealed at various temperatures in oxygen atmosphere. The temperature dependence of electrical resistance, the microstructure of intermediate phase, and the surface morphology of films were examined by four probe method, XRD, and SEM, respectively. The chemical composition and the depth profile of the films were determined by ESCA spectra. Thin films annealed at $600^{\circ}C$ and $700^{\circ}C$ in oxygen atmosphere showed onset temperatures of 90 K and 85K, and Tc(zero) of 22K and 31K, respectively. The sample annealed at $700^{\circ}C$ had the highest volume fraction of superconducting phase and showed smooth microsturcture. In ESCA spectra, the thin films were homogeneous with depth.

  • PDF

Characteristics of TiN Barrier Metal Prepared by High Density Plasma CVD Method (고밀도 플라즈마 CVD 방법에 의한 TiN barrier metal 형성과 특성)

  • Choe, Chi-Gyu;Gang, Min-Seong;O, Gyeong-Suk;Lee, Yu-Seong;O, Dae-Hyeon;Hwang, Chan-Yong;Son, Jong-Won;Lee, Jeong-Yong;Kim, Geon-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1129-1136
    • /
    • 1999
  • TIN films were prepared on Si(100) substrate by ICP-CVD(inductive1y coupled plasma enhanced chemical vapor deposition) using TEMAT(tetrakis ethylmethamido titanium : Ti$[\textrm{N}\textrm{(CH)}_{3}\textrm{C}_{2}\textrm{H}_{5}]_{4}$) precursor at various deposition conditions. Phase, microstructure, and the electrical properties of TIN films were characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM) and electrical measurements. Polycrystalline TiN films with B1 structure were grown at temperatures over $200^{\circ}C$. Preferentially oriented along TiN(111) films were obtained at temperatures over $300^{\circ}C$ with the flow rates of 10, 5, and 5 sccm for TEMAT, $\textrm{N}_{2}$ and Ar gas. The TiN/Si(100) interface was flat and no chemical reaction between TIN and $\textrm{SiO}_2$ was found. The resistivity, carrier concentration and the carrier mobility for the TiN sample prepared at $500^{\circ}C$ are 21 $\mu\Omega$cm, 9.5$\times\textrm{10}^{18}\textrm{cm}^{-3}$ and $462.6\textrm{cm}^{2}$/Vs, respectively.

  • PDF

Manufacturing of Hybrid Metal Matrix Composites used $Al_2O_3$ Short Fiber and $Al_2O_3$-TiC Composite Powder Synthesized by SHS Process (SHS법에 의해 제조된 $Al_2O_3$-TiC복합분말과 $Al_2O_3$단섬유를 강화재로 사용한 하이브리드 금속기 복합재료의 제조)

  • Kim, Dong-Hyeon;Maeng, Deok-Yeong;Lee, Jong-Hyeon;Won, Chang-Whan
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.315-321
    • /
    • 1999
  • Metal matrix composites have been extensively studied because of their excellent characteristics for structural application. $Al_2O_3$ and SiC have been used as a common reinforcement owing to their good mechanical properties. However the manufacturing cost of these ceramic reinforcement is expensive, so the use of the composites has been restricted to special purposes. In this study, we tested the application possibility as a reinforcement of $Al_2O_3$-TiC powder synthesized by SHS(Self-propagating High-temperature Synthesis) process to Al alloy matrix composite. Also, $Al_2O_3$ short fibers were added with the synthesized powders in order to apply to the Al matrix hybrid composites. Squeeze infiltration casting process was used to make the composite with 25vol% of reinforcement. Microstructure and crystal structure were examined by SEM, OM and XRD, also the mechanical properties were studied by the compressive test and wear test.

  • PDF

Microstructure of the Hybrid Al2O3-TiC/Al Composite by Rapid Solidification and Stone Mill Process. (급속응고 및 Stone Mill 공정에 의해 제조된 하이브리드 Al2O3-TiC/Al 복합재료의 미세조직)

  • 김택수;이병택;조성석;천병선
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2003
  • Hybrid $A1_2O_3-TiC$ ceramic particle reinforced 6061 and 5083 Al composite powders were prepared by the combination of twin rolling and stone mill crushing process, followed by consolidating processes of cold compaction, degassing and hot extrusion. The composite bar consists of lamellar structure of ceramic particle rich area and matrix area, in which the hybrid was decomposed into each TiC of about $3-4\mutextrm{m}$ and $AI_2O_3$ particles of about $1-2\mutextrm{m}$ in diameter. It also found that fine $Mg_2Si$ precipitates of about 30 nm were embedded in the matrix, which have grains of about 3 $\mutextrm{m}$. Higher UTS was measured at the 5083 composite bar compared to the conventionally fabricated composite, due to again refinement effect by the rapid solidification. No particle was shown to form in the interface between the matrix and reinforcement, whereas carbon was diffused into the matrix.

Immiscibility, nucleation and mechanical properties in the lithia-baria-silica system

  • Ertug, Burcu
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.394-400
    • /
    • 2018
  • The current work investigates the effects of nucleation heat treatments, on the microstructure and mechanical properties of a novel silicate glass in $Li_2O-BaO-SiO_2$ system with 1 mol% $P_2O_5$ as nucleating agent. As-cast glass was exposed to nucleation heat treatments at $490-550^{\circ}C$ for 1-3 h. The microstructural examination was performed by SEM/EDS. The highest Vickers microhardness was determined to be 650 Hv for the sample heat treated at $550^{\circ}C$ for 1 h. The increase in the nucleation time also affected Vickers microhardness and the highest one was determined to be 600 Hv after nucleation for 3 h. The fracture toughness, $K_{IC}$ reached $2.51MPa.m^{1/2}$ after nucleation at $550^{\circ}C$ for 1 h. The nucleation temperatures had a more pronounced effect on the fracture toughnesses in comparison to nucleation times. The indentation toughness data was used to determine Weibull parameters from Ln ln [1/(1-P)]-$lnK_{IC}$ plots. Weibull modulus, m of the samples nucleated at 500, 510, 530, $550^{\circ}C$ for 1h. and $540^{\circ}C$ for 2 h. were determined similarly to be 3.8, 3.5, 4.7 and 3.9, respectively. The rest of the samples indicated higher Weibull moduli, which may be attributed to the formations of microcracks due to the mismatch in between newly formed crystals and remaining glassy matrix.

Thermal Stability of Titanium and Cobalt Thin Films on Silicon Oxide Spacer (티타늄과 코발트 박막의 산화규소 스페이서에 대한 열적안정성)

  • Cheong, Seong-Hwee;Song, Oh-Sung;Kim, Min-Sung
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.865-869
    • /
    • 2002
  • We investigated the reaction stability of titanium, cobalt and their bilayer films with side-wall spacer materials of SiO$_2$ for the salicide process. We prepared Ti 350 $\AA$, Co 150 $\AA$, Co 150 $\AA$/Ti 100 $\AA$ and Ti 100 $\AA$/Co 150 $\AA$ films on 1000 $\AA$-thick thermally grown SiO$_2$ substrates, respectively. Then the samples were rapid thermal annealed at the temperatures of $500^{\circ}C$, $600^{\circ}C$, and $700^{\circ}C$ for 20 seconds. We characterized the sheet resistance of the metallic layers with a four-point probe, surface roughness with scanning probe microscope, residual phases with an Auger depth profilometer, phase identification with a X-ray diffractometer, and cross-sectional microstructure evolution with a transmission electron microscope, respectively. We report that Ti reacted with silicon dioxide spacers above $700^{\circ}C$, Co agglomerated at $600^{\circ}C$, and Co/Ti, Ti/Co formed CoTi compound requiring a special wet process.

Influence of Nano Silica Dispersant on Hydration Properties of Cementitious Materials (시멘트의 수화특성에 대한 유·무기 복합 나노실리카의 영향)

  • Kang, Hyun-Ju;Song, Myong-Shin;Park, Jong-Hun;Song, Su-Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.510-515
    • /
    • 2011
  • In this study, as a material used to replace silica fumes for high strength concrete, nano-silica compound with organic functional group for dispersion and with inorganic silica group that can cause a pozzolan reaction is synthesized, These nano silica compound is divided into IC, which is nano size $SiO_2$ with irregularly combined hydroxyl group and carboxyl group, and RC, which is nano size $SiO_2$ with regularly combined hydroxyl group and carboxyl group. The effects of these nano silica compound on the hydration of cement are reviewed. As a result, all of synthesized nano-silica compounds have excellent dispersion on the cement flow, we think that dispersion property is the effect of air entraining by synthesized nano-silica compounds. The result of the microstructure observation showed that the particle size of the synthesized nano-silica is smaller than silica fume and spread evenly among the cement particles. In initial The phenomenon of strength decreasing occurred due to delayed hydration reaction by the synthesized nano-silica with carboxyl(-COOH) and hydroxyl(-OH) functional group.

The Electrical Properties of Mutilayer Chip Capacitor with X7R by Addition of Rare-Earth Ions (Y2O3, Er2O3) using Design of Experiments (실험계획법을 적용한 X7R 적층 칩 커패시터의 희토류(Y2O3, Er2O3) 첨가에 따른 전기적 특성)

  • Yoon, Jung-Rag;Moon, Hwan;Lee, Heun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.216-221
    • /
    • 2010
  • Employing statistical design of experiments, the difference in doping behaviors of rare-earth ions and their effects on the dielectric property and microstructure of $BaTiO_3$-MgO-$MnO_2$-($Ba_{0.4}Ca_{0.6}$) $SiO_3-Re_2O_3$ (Re = $Y_2O_3$, $Er_2O_3$) system were investigated. Through the statistical analysis we have found that the amount of $Re_2O_3$ are significantly affecting on the dielectric properties. The $Re_2O_3$ improved the dielectric constant, dielectric loss and R*C constant, so the appropriate contents of $Y_2O_3$ and $Er_2O_3$ were 0.8 ~ 1.2 mol% and 0.8 ~ 1.3 mol%, respectively. The MLCC(mutilayer chip capacitor) with $2.0{\times}1.2{\times}1.2mm$ size and 475 nF was also suited for X7R with the above composition. It showed that the dielectric constant and RC constant were 2,839 and 3,675 ${\Omega}F$, respectively in the sintering condition at $1250^{\circ}C$ in $Po_2$ $10^{-7}$ Mpa.

Properties Optimization for Perovskite Oxide Thin Films by Formation of Desired Microstructure

  • Liu, Xingzhao;Tao, Bowan;Wu, Chuangui;Zhang, Wanli;Li, Yanrong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.715-723
    • /
    • 2006
  • Perovskite oxide materials are very important for the electronics industry, because they exhibit promising properties. With an interest in the obvious applications, significant effort has been invested in the growth of highly crystalline epitaxial perovskite oxide thin films in our laboratory. And the desired structure of films was formed to achieve excellent properties. $Y_1Ba_2Cu_3O_{7-x}$ (YBCO) superconducting thin films were simultaneously deposited on both sides of 3 inch wafer by inverted cylindrical sputtering. Values of microwave surface resistance R$_2$ (75 K, 145 GHz, 0 T) smaller than 100 m$\Omega$ were reached over the whole area of YBCO thin films by pre-seeded a self-template layer. For implementation of voltage tunable high-quality varactor, A tri-layer structured SrTiO$_3$ (STO) thin films with different tetragonal distortion degree was prepared in order to simultaneously achieve a large relative capacitance change and a small dielectric loss. Highly a-axis textured $Ba_{0.65}Sr_{0.35}TiO_3$ (BST65/35) thin films was grown on Pt/Ti/SiO$_2$/Si substrate for monolithic bolometers by introducing $Ba_{0.65}Sr_{0.35}RuO_3$ (BSR65/35) thin films as buffer layer. With the buffer layer, the leakage current density of BST65/35 thin films were greatly reduced, and the pyroelectric coefficient of $7.6\times10_{-7}$ C $cm^{-2}$ $K^{-1}$ was achieved at 6 V/$\mu$m bias and room temperature.