• Title/Summary/Keyword: %24SiO_2%24Microstructure

Search Result 31, Processing Time 0.023 seconds

The Microstructure Control of SiC Ceramics Containing Porcelain Scherben (자기파를 함유한 SiCwlf 세라믹스의 미세구조 제어)

  • 이성희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.626-634
    • /
    • 1995
  • The SiC-porcelain powder mixtures containing 51.9wt% SiC are produced as by-products from the surface abrasion process of porcelain cores. This raw powders were used as starting materials for the synthesis of SiC containing ceramics. The specimen, which was fired at 135$0^{\circ}C$ from raw powders, had SiC, $Al_{2}O_{3}$, , cristobalite, mullite as crystalline phases, and the fractured microstructure showed dispersed SiC crystalline particles almost wetted with glassy matrix and spherical pores. Although the oxidation of SiC containing powder compacts wetted with glassy matrix and spherical pores. Although the oxidation of SiC containing powder compacts started at the range of 600~80$0^{\circ}C$ form the analysis of weight gain, the presence of $SiO_{2}$ crystallien phase and cristobalite was confirmed at 100$0^{\circ}C$ by XRD analysis. Mullitization of specimens was accelerated by preheating before the final firing. The specimen sintered at 135$0^{\circ}C$ after 100$0^{\circ}C$ preheating consisted of SiC, cristobalite, mullite as crystalline phases, and revealed 2.24g/$cm^{3}$ bulk density, 11.73% water adsorption, porous microstructure with small amount of glassy phase. SiC contents of specimens, which was 51.9 wt% in the raw powders, reduced to 37~22 wt% after firing at 135$0^{\circ}C$ depending on the preheating condition.

  • PDF

Analysis of Electronic Materials Using Transmission Electron Microscopy (TEM) (전자현미경을 이용한 전자재료분석)

  • Kim, Ki-Bum
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.132-144
    • /
    • 1994
  • The application of TEM in investigating the evolution of microstructure during solid phase crystallization of the amorphous Si, $Si_{1-x}Ge_x,\;and\;Si_{1-x}Ge_x/Si$ films deposited on $SiO_2$ substrate, in identifying the failure mechanism of the TiN barrier layer in the Cu-metallization scheme, and in comparing the microstructure of the as-deposited Cu-Cr and Cu-Ti alloy films are discussed. First, it is identified that the evolution of microstructure in Si and $Si_{1-x}Ge_x$ alloy films strongly depends on the concentration of Ge in the film. Second, the failure mechanism of the TiN diffusion barrier in the Cu-metallization is the migration of the Cu into the Si substrate, which results in the formation of a dislocation along the Si {111} plane and precipitates (presumably $Cu_{3}Si$) around the dislocation. Finally, the microstructure of the as-deposited Cu-Cr and Cu-Ti alloy films is also quite different in these two cases. From these several cases, we demonstrate that the information which we obtained using TEM is critical in understanding the behavior of materials.

  • PDF

Effects of Physical Properties of Glass on the TCR of $RuO_2$ Thick Film Resistors for Hybrid Integrated Circuits (HIC) (HIC용 $RuO_2$ 후막저항체에서 유리의 물리적 성질이 TCR에 미치는 영향)

  • Lee, B.S.;Lee, J.
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.974-978
    • /
    • 1993
  • Glass viscosity effects on the electrical properties and microstructure of RuO2 based thick film resistors (TFR) using alumina modified lead borosilicate glasses were studied. AT 85$0^{\circ}C$, the glass viscosities were increased from 4.24Pa.s to 51.5Pa.s when the alumina was added from none to 14 weight percent to the standard glass of 63% PbO, 25% B2O3 and 12% SiO2. The resistivities of resistors were generally decreased and the microstructure development was retarded as the viscosity of the glass increased. This is contrary to the generally accepted thought that the low resistivity is due to fast microstructure development kinetics in TFR. Even though the glass viscosity retards the microstructure development kinetics, the overall network formations are favored for higher viscosity of glass, such that the sheet resistivities were decreased as the glass viscosity increased.

  • PDF

Fabrication of (PDDA/SiO2) Thin Film by an Applying Voltage Layer-By-Layer Self Assembly Method (전압인가 LBL법을 이용한 (PDDA/SiO2) 박막 제조)

  • Park, Jong-Guk;Kyung, Kyu-Hong;Lee, Mi-Jai;Hwang, Jonghee;Lim, Tae-Young;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.715-719
    • /
    • 2014
  • (PDDA/$SiO_2$) thin films that consisted of positively charged poly (diallyldimethylammonium chloride) (PDDA) and negatively charged $SiO_2$ nanoparticles were fabricated on a glass substrate by an applying voltage layer-by-layer (LBL) self-assembly method. In this study, the microstructure and optical properties of the (PDDA/$SiO_2$) thin films coated on glass substrate were measured as a function of the applied voltage on the Pt electrodes. When 1.0 V was applied to a Pt electrode in a PDDA and $SiO_2$ solution, the thickness of the $(PDDA/SiO_2)_{10}$ thin film increased from 79 nm to 166 nm. The surface roughness also increased from 15.21 nm to 33.25 nm because the adsorption volume of the oppositely charged PDDA and $SiO_2$ solution increased. Especially, when the voltage was applied to the Pt electrode in the $SiO_2$ solution, the thickness increase of the (PDDA/$SiO_2$) thin film was larger than that obtained when using the PDDA solution. The refractive index of the fabricated (PDDA/$SiO_2$) thin film was ca. n = 1.31~1.32. The transmittance of the glass substrate coated by (PDDA/$SiO_2$)6 thin film with a thickness of 106 nm increased from ca. 91.37 to 95.74% in the visible range.

Change in Water Contact Angle on Electrospray-Synthesized SiO2 Coated Layers by Plasma Exposure (플라즈마 조사에 의한 전기분무합성 SiO2 코팅층의 물접촉각 변화)

  • Kim, Jae-Hun;Lee, Junseong;Kim, Ji Yeong;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.639-643
    • /
    • 2014
  • Hydrophilic $SiO_2$ layers were obtained by the atmospheric-pressure plasma treatment. Superhydrophobic $SiO_2$ layers were first deposited by the electrospray deposition method. The electrospunable solution that was prepared based on the solgel method was sprayed on Si (100) substrates. The surface of the electrosprayed $SiO_2$ layers consisted of the agglomeration of nano-sized grains, which led to a very high roughness and revealed a very high contact angle to water droplets over $162^{\circ}$. After having been exposed to the atmospheric $Ar/O_2$ plasma, the observed superhydrophobicity of the $SiO_2$ layers were greatly changed: a dramatic variation of the water contact angle from $162^{\circ}$ to $3^{\circ}$, namely realization of superhydrophillicity. Interestingly, the surface microstructure was almost preserved. According to the XPS analysis, it is more likely that thanks to the plasma exposure, the surface of $SiO_2$ layers will be cleaned in terms of organic species that are hydrophobic-inducing, consequently leading to the hydrophilic nature observed for the plasma-exposed $SiO_2$ layers.

Microstructure and Mechanical Properties of Cr-O-N Coatings Synthesized by Arc Ion Plating (Arc Ion Plating으로 합성된 Cr-ON 코팅막의 미세구조 및 기계적 성질)

  • Yun, Jun-Seo;Choe, Ji-Hwan;Kim, Gwang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.192-193
    • /
    • 2009
  • CrN 코팅막은 고온에서 치밀한 Cr2O3 확산방지막을 형성함으로 $800^{\circ}C$까지 기계적성질을 유지할 수 있다. 본 실험에서는 Ar, N2, 그리고 $O_2$ 가스 분위기에서 AIP(Arc Ion Plating) 기법에 의해 다양한 조성의 Cr-O-N 박막을 Si(200)과 AISI 304 기판 위에 증착되었다. Cr-O-N 코팅막은 47.4at% 미만의 산소함량을 포함 할 때까지 B1구조를 유지하였고 코팅막 내 산소함량 24.6at%에서는 강한 XRD peak intensification을 나타내었다. 47.4at%에서는 결정상을 전혀 찾아볼 수 없는 전이구조를 나타내었고, 그 이상의 산소함량에서는 Cr22O3 결정상을 나타내었다. Cr-O(17at%)-N 조성의 코팅막에서는 (200)배향의 Grain 크기 증가 및 압축잔류응력이 증가하였으나, 그 이상의 산소함량에서는 점차 감소하였다. Cr-O(24.6at%)-N 조성의 코팅막이 가장 높은 경도를 나타내었고, 산소함량이 증가할수록 점차 향상된 마찰특성을 보였다.

  • PDF

Effect of an Au Nanodot Nucleation Layer on CO Gas Sensing Properties of Nanostructured SnO2 Thin Films

  • Hung, Nguyen Le;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.152-158
    • /
    • 2014
  • We report the effect of the fabric of the surface microstructure on the CO gas sensing properties of $SnO_2$ thin films deposited on self-assembled Au nanodots ($SnO_2$/Au) that were formed on $SiO_2/Si$ substrates. We characterized structural and morphological properties, comparing them to those of $SnO_2$ thin films deposited directly onto $SiO_2/Si$ substrates. We observed a significant enhancement of CO gas sensing properties in the $SnO_2$/Au gas sensors, specifically exhibiting a high maximum response at $200^{\circ}C$ and quite a low detection limit of 1 ppm level in dry air. In particular, the response of the $SnO_2/Au$ gas sensor was found to reach the maximum value of 32.5 at $200^{\circ}C$, which is roughly 27 times higher than the response (~1.2) of the $SnO_2$ gas sensor obtained at the same operating temperature of $200^{\circ}C$. Furthermore, the $SnO_2/Au$ gas sensors displayed very fast response and recovery behaviors. The observed enhancement in the CO gas sensing properties of the $SnO_2/Au$ sensors is mainly ascribed to the formation of a nanostructured morphology in the active $SnO_2$ layer having a high specific surface-reaction area by the insertion of a nanodot form of Au nucleation layer.

Influence of pH and Dye Concentration on the Physical Properties and Microstructure of New Coumarin 4 Doped SiO2-PDMS ORMOSIL

  • Oh, E.O.;Gupta, R.K.;Cho, N.H.;Yoo, Y.C.;Cho, W.S.;Whang, C.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.299-305
    • /
    • 2003
  • Physical properties and microstructure of new coumarin 4 doped $SiO_2$-PDMS ORMOSILs, synthesized by one-step (OS, acid-catalysis) and two-step (TS, acid-base catalysis) routes of sol-gel method with varying pH (0.6 to 7) and dye content $(5\;{times}\;10^{-4}\;to\;5{\times}\;10^{-2}\;mole)$, are reported. BET, UV-visible spectroscopy and SEM were used for characterizations. The increase in acid or base concentration increased the size of pores and aggregated silica particles. The samples with pH ≤ 2.5 were transparent and attributed to the small size of pores (~20 Å) and silica particles. The samples with pH > 2.5 were translucent or opaque due to non-uniform pore system formed by voids and large aggregated silica particles. The surface area was found a key factor controlling the interactions between the gel matrix and the dye. The OS samples with the highest dye concentration exhibited the minimal values of pore size, surface area and silica particle size, resulting in the concentration-quenching phenomenon.

Microstructure and Corrosion Characteristics of Al-Si Coated PWA1426 and PWA658 Alloy (Al-Si 코팅된 PWA1426과 PWA658 합금의 미세조직과 고온부식 특성)

  • 이경구;안종천;서윤종
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.1
    • /
    • pp.17-24
    • /
    • 2000
  • The microstructures and corrosion properties of Al-Si diffusion coated PWA1426 and PWA658 alloys have been investigated. The coated layer and corrosion properties were analysed by SEM, EDS and hot corrosion test. According to the results of SEM, it is supposed that the coated layers were composed of mixed, denuded and inter-diffusion layer. The coated PWA1426 alloy improved corrosion properties, compared to the PWA658 alloy. Corrosion debris generated during hot corrosion test of PWA658 alloy are identified as NiO, $TiO_2$and $NiAl_2$$O_4$from coated layer which increase oxidation rate and decrease adhesion. The PWA1426 alloy heat treated at $1080^{\circ}C$ showed that NiAl and $Al_2$$O_3$formed on coated layer.

  • PDF

Phase Formation and Physical Properties of SiAlON Ceramics Fabricated by Gas-Pressure Reactive Sintering (가스압 반응소결로 제조된 SiAlON 세라믹스의 상형성과 물리적 특성)

  • Lee, Soyul;Choi, Jae-Hyeong;Han, Yoonsoo;Lee, Sung-Min;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.431-436
    • /
    • 2017
  • SiAlON-based ceramics are some of the most typical oxynitride ceramic materials, which can be used as cutting tools for heat-resistant super-alloys (HRSA). SiAlON can be fabricated by using gas-pressure reactive sintering from the raw materials, nitrides and oxides such as $Si_3N_4$, AlN, $Al_2O_3$, and $Yb_2O_3$. In this study, we fabricate $Yb_{m/3}Si_{12-(m+n)}Al_{m+n}O_nN_{16-n}$ (m=0.3, n=1.9, 2.3, 2.7) ceramics by using gas-pressure sintering at different sintering temperatures. Then, the densification behavior, phase formation, microstructure, and hardness of the sintered specimens are characterized. We obtain a fully densified specimen with ${\beta}$-SiAlON after gas-pressure sintering at $1820^{\circ}C$ for 90 min. under 10 atm $N_2$ pressure. These SiAlON ceramic materials exhibited hardness values of ~92.9 HRA. The potential of these SiAlON ceramics for cutting tool application is also discussed.