• Title/Summary/Keyword: $SiO_2$ particle

Search Result 480, Processing Time 0.028 seconds

Fabrication of in-situ Formed Namo-Composite Using Polymer Precursor : I. Adsorption Behavior of Polymer Followed $SiO_2$ Surface formation onto Silicon Nitride Surface (폴리머 Precursor를 이용한 in-situ 나노 복합체의 제조 : I. 질화규소 표면에서의 $SiO_2$ 피막형성에 따른 폴리머의 흡착거동)

  • 정연길;백운규
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.280-287
    • /
    • 2000
  • Adsorption behavior and amount of phenolic resin followed silica (SiO2) formation onto silicon nitride(Si3N4) surface were investigated using electrokinetic sonic amplitude (ESA) technique and with UV spectrometer, to fabricate Si3N4/SiC nano-composite based on reaction between SiO2 formed and phenolic resin absorbed onto Si3N4 particle. The amount of SiO2 formed and carbon from phenolic resin absorbed onto Si3N4 surface were calculated quantitatively to adjust the reaction between SiO2 and phenolic resin, resulting in no residual SiO2 and carbon. As a result, pre-heated tempeature for optimized reaction was below 25$0^{\circ}C$, in which there was no residual SiO2 and carbon.

  • PDF

High Strength $Si_3N_4/SiC$ Structural Ceramics (고강도 $Si_3N_4/SiC$ 구조세라믹스에 관한 연구)

  • 김병수;김인술;장윤식;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.12
    • /
    • pp.999-1006
    • /
    • 1993
  • Si3N4(p)-SiC(p) composites were prepared by gas pressure sintering at 190$0^{\circ}C$ for 1 hour. $\alpha$-SiC with average particle size of 0.48${\mu}{\textrm}{m}$ were dispersed from zero to 50vol% in $\alpha$-Si3N4 with average particle size of 0.5${\mu}{\textrm}{m}$. Y2O3-Al2O3 system was used as sintering aids. When 10vol% of SiC was added to Si3N4, optimum mechanical properties were observed; relative density of 98.8%, flextural strength of 930MPa, fracture toughness of 5.9MPa.m1/2 and hardness value of 1429kg/$\textrm{mm}^2$. Grain growth of $\beta$-Si3N4 was inhibited as the amount of added SiC was increased. SiC particles were found inside the $\beta$-Si3N4 intragrains in case of 10, 20 and 30vol%SiC added composites.

  • PDF

Synthesis and Catalytic Performance of MTT Zeolites with Different Particle Size and Acidity (다양한 입자크기와 산성도를 지닌 MTT 제올라이트의 합성 및 촉매특성 연구)

  • Park, Sung Jun;Jang, Hoi-Gu;Cho, Sung June
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.600-606
    • /
    • 2018
  • The influence of acidity in MTT zeolite of different Si/Al molar ratio's on the catalyst activity in methanol-to-olefin (MTO) reaction has been investigated. The Si/Al ratio was controlled with the Al content in the gel when N,N,N',N'-tetramethyl-1,3-diaminopropane was used as a structure directing agent (SDA). The gel composition was controlled to $20SiO_2$ : 30SDA : x (=0.25~1.25)$NaAlO_2$ : 2NaOH : $624H_2O$, which was subject to the hydrothermal synthesis at 433 K for 4 days. As the composition of sodium aluminate decreased, the particle size of MTT zeolite increased, and also the amount of acid sites decreased. To investigate the catalytic performance, MTO reaction was carried out at 673 K with $1.2h^{-1}$ WHSV. It was found that the H-MTT (1.00Al) catalyst with a Si/Al molar ratio of 24 maintained the methanol conversion over 90% for 900 min.

Preparation and Characterization of Zn2SiO4:Mn2+ Green Phosphor with Solid State Reaction (고상법에 의한 Zn2SiO4:Mn2+녹색 형광체의 제조와 특성에 관한 연구)

  • Yoo, Hyeon-Hee;Nersisyan, Hayk;Won, Hyung-Il;Won, Chang-Whan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.352-356
    • /
    • 2011
  • [ $Zn_{2(1-x)}Mn_xSiO_4$ ]$0.07{\leq}x{\leq}0.15$) green phosphor was prepared by solid state reaction. The first heating was at $900^{\circ}C-1250^{\circ}C$ in air for 3 hours and the second heating was at $900^{\circ}C$ in $N_2/H_2$(95%/5%) for 2 hours. The size effect of $SiO_2$ in forming $Zn_2SiO_4$ was investigated. The temperature for obtaining single phase $Zn_2SiO_4$ was lowered from $1100^{\circ}C$ to $1000^{\circ}C$ by decreasing the $SiO_2$ particle size from micro size to submicro size. The effect of the activators for the Photoluminescence (PL) intensity of $Zn_2SiO_4:Mn^{2+}$ was also investigated. The PL intensity properties of the phosphors were investigated under vacuum ultraviolet excitation (147 nm). The emission spectrum peak was between 520 nm and 530 nm, which was involved in green emission area. $MnCl_2{\cdot}4H_2O$, the activator source, was more effective in providing high emission intensity than $MnCO_3$. The optimum conditions for the best optical properties of $Zn_2SiO_4:Mn^{2+}$ were at x = 0.11 and $1100^{\circ}C$. In these conditions, the phosphor particle shape was well dispersed spherical and its size was 200 nm.

A Study on the Deposition Characteristics of Ultrafine SiO2 Particles by Temperature Control in Deposition Zone (증착 구간에서의 온도 제어에 따른 SiO2 초미립자의 증착 특성 고찰)

  • You, Soo-Jong;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.157-168
    • /
    • 1996
  • The deposition characteristics of ultrafine $SiO_2$ particles were investigated in a tube furnace reactor theoretically and experimentally controlling tube wall temperature in deposition zone. The model equations such as mass and energy balance equations and aerosol dynamic equations inside reactor and deposition tube were solved to predict the particle growth and deposition. The particle size and deposition efficiencies of $SiO_2$ particles were calculated, changing the process conditions such as tube furnace setting temperature, total gas flow rate inlet $SiCl_4$ concentration and were compared with the experimental results.

  • PDF

Fabrication Process and Mechanical Properties of High Volume Fraction SiC Particle Preform (고부피분율 SiC분말 예비성형체의 제조공정과 기계적특성)

  • 전경윤
    • Journal of Powder Materials
    • /
    • v.7 no.1
    • /
    • pp.27-34
    • /
    • 2000
  • The fabrication process and mechanical properties of SiC particle prefrrms with high volume fraction ranged 50∼71% were investigated to make metal matrix composites for possible applications as heat sinks in electronic packares. The SiC particle preforms with 50∼71vol% of reinforcement were fabricated by a new modified process named ball milling and pressing method. The SiC particle performs were fabricated by ball milling of SiC particles with single sized of 48${\mu}$m in diameter or two different size of 8${\mu}$m and 48${\mu}$min diameter, with collodal SiO2 as inorgnic binder in distilled water, and the mixed slurries were cold pressed for consolidation into final prefom. The compressive strengths og calcined SiC particle prefoms increased from 20MPa to 155MPa with increasing the content of inorganis binder, temperature and time for calcination. The increase of compressive strength of SiC particle bridge the interfaces of two neighboring SiC particles.

  • PDF

Powder Chracteristics and Sintering Behavior of $SiO_2$ Coated $BaTiO_3$

  • Park, Jae-Sung;Han, Young-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1097-1098
    • /
    • 2006
  • The Powder characteristics and sintering behavior of $SiO_2$ coated $BaTiO_3$ were studied. Silica coated $BaTiO_3$ powders were prepared by sol-gel method. The particle size of the $BaTiO_3$ powders were $\sim35$ nm and the thickness of the $SiO_2$ coating layer was $\sim5$ nm. As the $SiO_2$ content increased, the $SiO_2$ layers improved the powder dispersion. The Zeta potential of $SiO_2$ coated $BaTiO_3$ was getting close to that of pure silica with a more negative charge, compared with that of the uncoated $BaTiO_3$. The onset temperature of shrinkage curves shifted to higher temperatures with increasing $SiO_2$ contents

  • PDF

Sintering Behavior of Zircon with SiO2 (Silica가 첨가된 지르콘 소결거동)

  • Lee, Keun-Bong;Kang, Jong-Bong
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.604-609
    • /
    • 2008
  • The sintering behavior of zircon with silica was investigated. Zircon with 5 vol% of sedimentation $SiO_2$ resulted in the apparent density of $4.45\;g/cm^3$, the diametral tensile strength of $12.125\;kgf/cm^2$, and the micro Vickers hardness of 1283 HV. The dissociation temperature and mechanical characteristics of the $ZrSiO_4$ were changed with different kinds of $SiO_2$. $SiO_2$ addition prevented dissociation of $ZrSiO_4$. Zircon with 5 vol% of sedimentation $SiO_2$ and with 5 vol% of fused $SiO_2$ resulted in increased diametral tensile strength and increased micro Vickers hardness by suppression of $ZrSiO_4$ dissociation and low temperature liquid $SiO_2$ formation. Zircon with fumed $SiO_2$ and quartz $SiO_2$ resulted in decreased diametral tensile strength and decreased micro Vickers hardness because of cristobalite and quartz phase formation and high temperature liquid $SiO_2$ formation. Zircon with 10 vol% of $SiO_2$ resulted in decreased diametral tensile strength and decreased micro Vickers hardness because of weak particle coupling due to excess formation of liquid $SiO_2$.

Properties of Liquid Phase Sintered SiC Materials Containing $Al_2O_3$ and $Y_2O_3$ Particles ($Al_2O_3$$Y_2O_3$ 입자를 함유한 액상소결 SiC 재료의 특성)

  • Lee, Sang-Pill;Lee, Moon-Hee;Lee, Jin-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.59-64
    • /
    • 2008
  • The mechanical properties of liquid phase sintered (LPS) SiC materials, with the addition of oxide powder, were investigated, in conjunction with a detailed analysis of their microstructures. LPS-SiC materials were fabricated at a temperature of 1820 $^{\circ}C$ under an argon atmosphere, using three different starting sizes of SiC particles. The sintering additive for the fabrication of the LPS-SiC materials was an $Al_2O_3-Y_2O_3$ mixture with a constant composition ratio ($Al_2O_3/Y_2O_3$: 1.5). The particle sizes of the commercial SiC powderswere 30 nm, 0.3 $\mu$m, and 3.0 $\mu$m. The flexural strength of the LPS-SiC materials was also examined at elevated temperatures. A decrease in the starting size of the SiC particles led to an increase in the flexural strength of the LPS-SiC materials, accompanying a highly dense morphology with the creation of a secondary phase. Such a secondary phase was identified as $Y_3Al_2(AlO_4)2$. The flexural strength of the LPS-SiC materials greatly decreased with an increase in the test temperature, due to the creation of a large amount of pores.

A Study on Characteristics of Fly and Bed Ash in Circulating Fluidized Bed Combustion Boiler According to Particle Size of Limestone (석회석 입도의 변화가 석탄회의 성상에 미치는 영향에 관한 연구)

  • Chung Jin-Do;Kim Jang-Woo;Ha Joon-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.587-592
    • /
    • 2006
  • The advantage of CFBC(Circulating fluidized bed combustor) is that it can apply to various fuel sources including the lower rank fuel and remove SOx by means of direct supply of limestone to the combustor without additional desulfation facility. In this paper, we denote characteristics of fly and bed ash to reuse finer limestone usually abandoned(used spec[Coarse LS] 0.1mm under 25%, new spec[Fine LS] 0.1mm under 50%). According to the results, the chemical composition of fly ash was as follows; $SiO_2\;40.8%,\;Al_2O_3\;31.9%,\;CaO\;10.7%,\;K_2O\;4.46%$ in the case of coarse limestone and $SiO_2\;41.1%,\;Al_2O_3\;31.3%,\;CaO\;10.9%,\;K_2O\;4.66%$ in the case of fine limestone. The chemical composition of bed ash was as follows; $SiO_2\;54.2%,\;Al_2O_3\;33.1%,\;CaO\;1.56%,\;K_2O\;4.34%$ in the case of coarse limestone and $SiO_2\;53.8%,\;Al_2O_3\;32.6%,\;CaO\;2.21%,\;K_2O\;4.45%$ in the case of fine limestone. It showed that there was no significant change in chemical composition. And it is conformed that there was no significant change in particle size and shapes.