• Title/Summary/Keyword: $SiO_2$ Nanoparticles

Search Result 204, Processing Time 0.027 seconds

Aminopropyl Functionalized Silica Nanoparticle Dispersed Nafion Composite Membranes for Vanadium Redox Flow Batteries (아미노프로필 관능기를 갖는 실리카 나노 입자가 분산된 나피온 복합막을 이용한 바나듐 레독스 흐름 전지)

  • Lee, Doohee;Yu, Duk Man;Yoon, Sang Jun;Kim, Sangwon;So, Soonyong;Hong, Young Taik
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.307-318
    • /
    • 2020
  • Conventional perfluorinated sulfonic acid membrane, Nafion is widely used for vanadium redox flow battery (VRFB). It is desired to prevent vanadium ion permeation through a membrane to retain the capacity, and to keep the cell efficiency of a VRFB. Highly proton conductive and chemically stable Nafion membranes, however, suffer from high vanadium permeation, which induce the reduction in charge and discharge capacity by side reactions of vanadium ions. In this study, to resolve the issue, silica nanoparticles, which are functionalized with 3-aminopropyl group (fS) are introduced to enhance the long-term performance of a VRFB by lowering vanadium permeation. It is expected that amine groups on silica nanoparticles are converted to positive ammonium ion, which could deteriorate positively charged vanadium ions' crossover by Gibbs-Donnan effect. There is reduction in proton conductivity may due to acid-base complexation between fS and Nafion side chains, but ion selectivity of proton to vanadium ion is enhanced by introducing fS to Nafion membranes. With the composite membranes of Nafion and fS, VRFBs maintain their discharge capacity up to 80% at a high current density of 150 mA/㎠ during 200 cycles.

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

Synthesis and Characterization of Branched Sulfonated Poly(Ether Sulfone-ketone) Copolymer and Organic-inorganic Nano Composite Membranes

  • Lee, Dong-Hoon;Park, Hye-Suk;Seo, Dong-Wan;Hong, Tae-Whan;Ur, Soon-Chul;Kim, Whan-Gi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.489-490
    • /
    • 2006
  • Branched sulfonated poly(ether sulfone-ketone) copolymer was prepared with bisphenol A, 4,4-difluorobenzophenone, sulfonated chlorophenyl sulfone (40mole% of bisphenol A) and THPE (1,1,1-tris-p-hydroxyphenylethane). THPE was used 0.4 mol% of bisphenol A to synthesize branched copolymers. Organic-inorganic nano composite membranes were prepared with copolymer and a series of $SiO_2$ nanoparticles (20 nm, 4, 7 and 10 wt%). The composite membranes were cast from dimethylsulfoxide solutions. The films were converted from the salt to acid forms with dilute hydrochloric acid. The membranes were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. Branched copolymer and nano composite membranes exhibit proton conductivities from $1.12{\times}10^{-3}$ to $6.04{\times}10^{-3}\;S/cm^2$, water uptake from 52.9 to 62.4%, IEC from 0.81 to 1.21 meq/g and methanol diffusion coefficients from $1.2{\times}10^{-7}$ to $1.5{\times}10^{-7}\;cm^2/S$.

  • PDF

Cobalt Oxide-Tin Oxide Composite: Polymer-Assisted Deposition and Gas Sensing Properties (PAD법으로 제작된 산화코발트-산화주석 복합체의 가스 감응 특성)

  • An, Sea-Yong;Li, Wei;Jang, Dong-Mi;Jung, Hyuck;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.611-616
    • /
    • 2010
  • A cobalt oxide - tin oxide nanocomposite based gas sensor on an $SiO_2$ substrate was fabricated. Granular thin film of tin oxide was formed by a rheotaxial growth and thermal oxidation method using dc magnetron sputtering of Sn. Nano particles of cobalt oxide were spin-coated on the tin oxide. The cobalt oxide nanoparticles were synthesized by polymer-assisted deposition method, which is a simple cost-effective versatile synthesis method for various metal oxides. The thickness of the film can be controlled over a wide range of thicknesses. The composite structures thus formed were characterized in terms of morphology and gas sensing properties for reduction gas of $H_2$. The composites showed a highest response of 240% at $250^{\circ}C$ upon exposure to 4% $H_2$. This response is higher than those observed in pure $SnO_2$ (90%) and $Co_3O_4$ (70%) thin films. The improved response with the composite structure may be related to the additional formation of electrically active defects at the interfaces. The composite sensor shows a very fast response and good reproducibility.

Measurement of Dynamic Contact Angle of Droplet on Moving Hydrophobic and Hydrophilic Surfaces (이동하는 소수성 및 친수성 표면에서 액적의 동접촉각 측정)

  • Song, Jungyu;Kim, Hyungdae
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.16-22
    • /
    • 2018
  • This study investigates dynamic wetting behaviors of a water droplet placed on surfaces with different wettability and nano-structures. Hydrophobic and hydrophilic properties on as-received silicon wafers were prepared by fabricating thin films of hydrophobic polymer and hydrophilic nanoparticles via layer-by-layer coating. Dynamic advancing contact angle of droplets on the prepared surfaces was measured at various moving velocities of triple contact line with a high-speed video camera. As advancing velocity of triple contact line increased, dynamic advancing contact angle on the as-received silicon and hydrophobic surfaces sharply increased up to $80^{\circ}$ in the range of order of mm/sec whereas the SiO2 nanoparticle-coated hydrophilic surface maintained low contact angles of about $30^{\circ}$ and then it gradually increased in the velocity range of order of hundred mm/sec. The improved dynamic wetting ability observed on the nanostructured hydrophilic surface can benefit the performance of various phase-change heat transfer phenomena under forced convective flow.

PEI Hollow Fiber Membranes Modified with Fluorinated Silica Nanoparticles for the Recovery of Biogas from Anaerobic Effluents (불화 실리카로 개질된 폴리에테르이미드 중공사막을 이용한 혐기성 유출수로부터 바이오가스 회수)

  • Yun, Kang Hee;Wongchitphimon, Sunee;Bae, Tae-hyun
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.326-332
    • /
    • 2020
  • In this study, polymer-fluorinated silica composite hollow fiber membranes were fabricated and applied to a membrane contactor for the recovery of methane dissolved in the anaerobic effluent. To prepare the composite membranes, porous hollow fiber substrates were fabricated with Ultem®, a commercial polyetherimide (PEI). Subsequently, fluorinated silica particles were synthesized and coated on the surface via strong covalent bonding. Due to the high porosity, our membrane showed a CH4 flux of 8.25 × 10-5 ㎤ (STP)/㎠·s at the liquid velocity of 0.03 m/s which is much higher that that of commercial polypropylene membrane designed for degassing processes. This is attributed to our membrane's high porosity as well as a superior surface hydrophobicity (120~122°) resulted from the coating with fluorinated silica nanoparticles.

Nanoscale Pyramid Texture for High Efficiency Multi-Crystalline Silicon Solar Cells (고효율 다결정 실리콘 태양전지 제작을 위한 나노크기의 피라미드 텍스쳐 제작)

  • Heo, Jong;Park, Min-Joon;Jee, Hong sub;Kim, Jin Hyeok;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.25-27
    • /
    • 2017
  • Nanoscale textured black silicon has attracted intensive attention due to its great potential as applications in multicrystalline silicon-based solar cells. It absorbs sunlight over a broad range of wavelengths but introduces large recombination centers, non-uniform doping into cell. In this study, we present a metal-assisted chemical etching technique plus alkaline etching process to fabricate nanoscale pyramid structures with optimized condition. To make the structures, silver nanoparticles-loaded mc-Si wafer was submerged into $H_2O_2/HF$ solution first for nanohole texturing the wafer and textured wafer etched again with KOH solution for making nanoscale pyramid structures. The average reflectivity (350-1050 nm) is about 8.42% with anti-reflection coating.

Electrical and Thermo-mechanical Properties of DGEBA Cycloaliphatic Diamine Nano PA and SiO2 Composites

  • Trnka, Pavel;Mentlik, Vaclav;Harvanek, Lukas;Hornak, Jaroslav;Matejka, Libor
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2425-2433
    • /
    • 2018
  • This study investigates a new organic based material and its dielectric and mechanical properties. It is a comprehensive nanocomposite comprising a combination of various types of nanofillers with hydrophobic silica nanoparticles (AEROSIL R 974) as a matrix modifier and a polyamide nano nonwoven textile, Ultramid-Polyamide 6, pulped in the electrostatic field as a dielectric barrier. The polymer matrix is an epoxy network based on diglycidyl ether of bisphenol A (DGEBA) and cycloaliphatic diamine (Laromine C260). The designed nanocomposite material is an alternative to the conventional three-component composites containing fiberglass and mica with properties that exceed current electroinsulating systems (volume resistivity on the order of $10^{16}{\Omega}{\cdot}m$, dissipation factor tan ${\delta}=4.7{\cdot}10^{-3}$, dielectric strength 39 kV/mm).

Dynamic analysis of the agglomerated SiO2 nanoparticles-reinforced by concrete blocks with close angled discontinues subjected to blast load

  • Amnieh, Hassan Bakhshandeh;Zamzam, Mohammad Saber
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.121-128
    • /
    • 2018
  • Three structure-dependent integration methods with no numerical dissipation have been successfully developed for time integration. Although these three integration methods generally have the same numerical properties, such as unconditional stability, second-order accuracy, explicit formulation, no overshoot and no numerical damping, there still exist some different numerical properties. It is found that TLM can only have unconditional stability for linear elastic and stiffness softening systems for zero viscous damping while for nonzero viscous damping it only has unconditional stability for linear elastic systems. Whereas, both CEM and CRM can have unconditional stability for linear elastic and stiffness softening systems for both zero and nonzero viscous damping. However, the most significantly different property among the three integration methods is a weak instability. In fact, both CRM and TLM have a weak instability, which will lead to an adverse overshoot or even a numerical instability in the high frequency responses to nonzero initial conditions. Whereas, CEM possesses no such an adverse weak instability. As a result, the performance of CEM is much better than for CRM and TLM. Notice that a weak instability property of CRM and TLM might severely limit its practical applications.

Compaction and Sintering Characteristics of High Energy Ball Milled Mn-Zn Ferrite Powders

  • Lee, Hyunseung;Rhee, Hoseong;Lee, Sangsoo;Chang, Si Young
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.677-681
    • /
    • 2021
  • The Mn-Zn ferrite powders were prepared by high energy ball milling, then compacted and sintered at various temperatures to assess their sintering behavior and magnetic properties. The initial ferrite powders were spherical in shape with the size of approximately 70 ㎛. After 3 h of ball milling at 300 rpm, aggregated powders ~230 nm in size and composed of ~15 nm nanoparticles were formed. The milled powders had a density of ~70 % when compacted at 490 MPa for 3 min. In the samples subsequently sintered at 1,273 K ~ 1,673 K for 3 h, the MnZnFe2O4 phase was detected. The density of the sintered samples had a tendency to increase with increasing sintering temperature up to 1,473 K, which produced the highest density of 98 %. On the other hand, the sample sintered at 1,373 K had the highest micro-hardness of approximately 610 Hv, which is due to much finer grains.