• Title/Summary/Keyword: $SiO_2$ Incorporation

Search Result 58, Processing Time 0.029 seconds

Electricial properties of oxynitride films prepared by furnace oxidation in $N_2O$ ($N_2O$ 가스에서 형성된 oxynitride막의 전기적 특성)

  • Bae, Sung-Sig;Seo, Yong-Jin;Kim, Tae-Hyung;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.90-93
    • /
    • 1992
  • In this paper, MOS characteristics of gate dielectrics prepared by furnace oxidation of Si in an $N_2O$ ambient have been studied. Compared with the oxides grown in $O_2$, $N_2O$ oxides show significantly improved breakdown field and low flat band voltage. Also, $N_2O$ oxide is more controllable for ultrathin film growth than $O_2$ oxide. This improvement is caused by nitrogen incorporation into the $N_2O$ oxide. Therefore, the nitrogen-rich-layer at the Si/$SiO_2$ interface formed during $N_2O$ oxidation not only strengthen $N_2O$ oxide structure at the interface and improves the gate dielectric quality, it also acts as a oxidant diffusion barrier that reduces the oxidation rate significantly.

  • PDF

Synthesis and Luminescence of Lu3(Al,Si)5(O,N)12:Ce3+ Phosphors

  • Ahn, Wonsik;Kim, Young Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.463-467
    • /
    • 2016
  • $Si^{4+}-N^{3-}$ was incorporated into $Ce^{3+}-doped$ lutetium aluminum garnet ($Lu_{2.965}Ce_{0.035}Al_5O_{12}$, $LuAG:Ce^{3+}$) lattices, resulting in the formation of $Lu_{2.965}Ce_{0.035}Al_{5-x}Si_xO_{12-x}N_x$ [(Lu,Ce)AG:xSN]. For x = 0-0.25, the synthesized powders consisted of the LuAG single phase, and the lattice constant decreased owing to the smaller $Si^{4+}$ ions. However, for x > 0.25, a small amount of unknown impurity phases was observed, and the lattice constant increased. Under 450 nm excitation, the PL spectrum of $LuAG:Ce^{3+}$ exhibited the green band, peaking at 505 nm. The incorporation of $Si^{4+}-N^{3-}$ into the $Al^{3+}-O^{2-}$ sites of $LuAG:Ce^{3+}$ led to a red-shift of the emission peak wavelength from 505 to 570 nm with increasing x. Corresponding CIE chromaticity coordinates varied from the green to yellow regions. These behaviors were discussed based on the modification of the $5d^1$ split levels and crystal field surroundings of $Ce^{3+}$, which arose from the Ce-(O,N)8 bonds.

Electrical and optical studies of organic light emitting devices using Ag and $SiO_2$ / poly(p-phenylene vinylene)(PPV) nanocomposites

  • Lee, Cho-Young;Park, Hyung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.367-367
    • /
    • 2007
  • Polymer/nanoparticle hybrids have been increasingly studied because of their enhanced properties for organic light emitting devices (OLEDs). In this study, we made poly(p-phenylene vinylene) (PPV) nanohybrid films by incorporation of Ag and $SiO_2$ nanoparticles into the PPV. A possible interaction between nanoparticles was investigated and especially we focused whether there is a change in the interaction between $SiO_2$ or Ag nanoparticles and matrix or not. The current characteristics of PPV nanohybrid films were analyzed by I-V and EL measurements. The optical properties were also investigated by UV-Vis spectroscopy and photoluminescence measurements.

  • PDF

Phase Formation Behavior and Charge-discharge Properties of Carbon-coated Li2MnSiO4 Cathode Materials for Lithium Rechargeable Batteries (리튬이차전지용 탄소 코팅된 Li2MnSiO4 양극활물질의 상형성 거동 및 충방전 특성)

  • Sun, Ho-Jung;Chae, Suman;Shim, Joongpyo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.143-149
    • /
    • 2015
  • Carbon-coated $Li_2MnSiO_4$ powders as the active materials for the cathode were synthesized by planetary ball milling and solid-state reaction, and their phase formation behavior and charge-discharge properties were investigated. Calcination temperature and atmosphere were controlled in order to obtain the ${\beta}-Li_2MnSiO_4$ phase, which was active electrochemically, and the carbon-coated $Li_2MnSiO_4$ active material powders with near single phase ${\beta}-Li_2MnSiO_4$ could be fabricated. The particles of the synthesized powders were secondary particles composed of primary ones of about 100 nm size. The carbon incorporation was essential to enable the Li ions to be inserted and extracted from $Li_2MnSiO_4$ active materials, and the initial capacity of 192 mAh/g could be obtained in the $Li_2MnSiO_4$ active materials with 4.8 wt% of carbon.

Investigation of Lithium Transference Number in PMMA Composite Polymer Electrolytes Using Monte Carlo (MC) Simulation and Recurrence Relation

  • Koh, Renwei Eric;Sun, Cha Chee;Yap, Yee Ling;Cheang, Pei Ling;You, Ah Heng
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.217-224
    • /
    • 2021
  • In this study, Monte Carlo (MC) simulation is conducted with recurrence relation to study the effect of SiO2 with different particle size and their roles in enhancing the ionic conductivity and lithium transference number of PMMA composite polymer electrolytes (CPEs). The MC simulated ionic conductivity is verified with the measurements from Electrochemical Impedance Spectroscopy (EIS). Then, the lithium transference number of CPEs is calculated using recurrence relation with the MC simulated current density and the reference transference number obtained. Incorporation of micron-size SiO2 (≤10 ㎛) fillers into the mixture improves the ionic conductivity from 8.60×10-5 S/cm to 2.35×10-4 S/cm. The improvement is also observed on the lithium transference number, where it increases from 0.088 to 0.3757. Furthermore, the addition of nano-sized SiO2 (≤12 nm) fillers further increases the ionic conductivity up towards 3.79×10-4 S/cm and lithium transference number of 0.4105. The large effective surface area of SiO2 fillers is responsible for the improvement in ionic conductivity and the transference number in PMMA composite polymer electrolytes.

Correlation study on microstructure and mechanical properties of rice husk ash-Sodium aluminate geopolymer pastes

  • Singh, N. Shyamananda;Thokchom, Suresh;Debbarma, Rama
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 2021
  • Rice Husk Ash (RHA) geopolymer paste activated by sodium aluminate were characterized by X-ray diffractogram (XRD), scanning electron microscope (SEM), energy dispersion X-Ray analysis (EDAX)and fourier transform infrared spectroscopy (FTIR). Five series of RHA geopolymer specimens were prepared by varying the Si/Al ratio as 1.5, 2.0, 2.5, 3.0 and 3.5. The paper focuses on the correlation of microstructure with hardened state parameters like bulk density, apparent porosity, sorptivity, water absorption and compressive strength. XRD analysis peaks indicates quartz, cristobalite and gibbsite for raw RHA and new peaks corresponding to Zeolite A in geopolymer specimens. In general, SEM micrographs show interconnected pores and loosely packed geopolymer matrix except for specimens made with Si/Al of 2.0 which exhibited comparatively better matrix. Incorporation of Al from sodium aluminate were confirmed with the stretching and bending vibration of Si-O-Si and O-Si-O observations from the FTIR analysis of geopolymer specimen. The dense microstructure of SA2.0 correlate into better performance in terms of 28 days maximum compressive strength of 16.96 MPa and minimum for porosity, absorption and sorptivity among the specimens. However, due to the higher water demand to make the paste workable, the value of porosity, absorption and sorptivity were reportedly higher as compared with other geopolymer systems. Correlation regression equations were proposed to validate the interrelation between physical parameters and mechanical strength. RHA geopolymer shows comparatively lower compressive strength as compared to Fly ash geopolymer.

Silicon Oxidation in Inductively-Coupled N2O Plasma and its Effect on Polycrystalline-Silicon Thin Film Transistors (유도결합 N2O 플라즈마를 이용한 실리콘 산화막의 저온성장과 다결정 실리콘 박막 트랜지스터에의 영향)

  • Won, Man-Ho;Kim, Sung-Chul;Ahn, Jin-Hyung;Kim, Bo-Hyun;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.724-728
    • /
    • 2002
  • Inductively-coupled $N_2$O plasma was utilized to grow silicon dioxide at low temperature and applied to fabricate polycrystalline-silicon thin film transistors. At $400^{\circ}C$, the thickness of oxide was limited to 5nm and the oxide contained Si≡N and ≡Si-N-Si≡ bonds. The nitrogen incorporation improved breakdown field to 10MV/cm and reduced the interface charge density to $1.52$\times$10^{11}$ $cm^2$ with negative charge. The $N_2$O plasma gate oxide enhanced the field effect mobility of polycrystalline thin film transistor, compared to $O_2$ plasma gate oxide, due to the reduced interface charge at the $Si/SiO_2$ interface and also due to the reduced trap density at Si grain boundaries by nitrogen passivation.

Electrical Characterization of Ultrathin $SiO_2$ Films Grown by Thermal Oxidation in $N_2O$ Ambient ($N_2O$ 분위기에서 열산화법으로 성장시킨 $SiO_2$초박막의 전기적 특성)

  • Gang, Seok-Bong;Kim, Seon-U;Byeon, Jeong-Su;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.63-74
    • /
    • 1994
  • The ultrathin oxide films less than 100$\AA$ were grown by thermal oxidation in $N_2O$ ambient to improve the controllability of thickness, thickness uniformity, process reproducibility and their electrical properties. Oxidation rate was reduced significantly at very thin region due to the formation of oxynitride layer in $N_2O$ ambient and moreover nitridation of the oxide layer was simultaneously accompanied during growth. The nitrogen incorporation in the grown oxide layer was characterized with the wet chemical etch-rate and ESCA analysis of the grown oxide layer. All the oxides thin films grown in $N_2O$, pure and dilute $O_2$ ambients show Fowler-Nordheim electrical conduction. The electrical characteristics of thin oxide films grown in $N_2O$ such as leakage current, electrical breakdown, interface trap density generation due to the injected electron and reliability were better than those in pure or dilute ambient. These improved properties can be explained by the fact that the weak Si-0 bond is reduced by stress relaxation during oxidation and replacement by strong Si-N bond, and thus the trap sites are reduced.

  • PDF

Study on the Passivation of Si Surface by Incorporation of Nitrogen in Al2O3 Thin Films Grown by Atomic Layer Deposition (원자층 증착법으로 형성된 Al2O3 박막의 질소 도핑에 따른 실리콘 표면의 부동화 특성 연구)

  • Hong, Hee Kyeung;Heo, Jaeyeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.111-115
    • /
    • 2015
  • To improve the efficiency of the Si solar cell, high minority carrier life time is required. Therefore, the passivation technology is important to eliminate point defects on the silicon surface, causing the loss of minority carrier recombination. PECVD or post-annealing of thermally-grown $SiO_2$ is commonly used to form the passivation layer, but a high-temperature process and low thermal stability is a critical factor of low minority carrier lifetime. In this study, atomic layer deposition was used to grow the $Al_2O_3$ passivation layer at low temperature process. $Al_2O_3$ was selected as a passivation layer which has a low surface recombination velocity because of the fixed charge density. For the high charge density, an improved minority carrier lifetime, and a low surface recombination, nitrogen was doped in the $Al_2O_3$ thin film and the improvement of passivation was studied.

Effect of sintering process on the electrical protection performance in a ZnO-based ceramic varistor (ZnO varistor의 소결온도와 첨가물혼합비가 전기적 보호특성에 미치는 영향)

  • 오명환;이경재
    • 전기의세계
    • /
    • v.31 no.6
    • /
    • pp.445-449
    • /
    • 1982
  • This Paper describes the influence of additive concentrations and sintering temperature on the surge protection performance in ZnO ceramic varistors. It is found from the experiments that the metal-oxide semiconductors based oi ZnO with an additive incorporation of 0.50% molx(Bi$\_$2/O$\_$3/+MnO+CoO+Cr$\_$2/O$\_$3/+2Sb$\_$2/O$\_$3/) and sintered at 1250.deg. C present excellent V-I characteristics in view of transient surge suppression. Gapless arrester element with aluminum electrodes shows also good reliability against impulse shock and marks a low voltage clamping ratio(V$\_$1KA/V$\_$1mA/<2.0) compared with the conventional SiC varistors.

  • PDF