DOI QR코드

DOI QR Code

Study on the Passivation of Si Surface by Incorporation of Nitrogen in Al2O3 Thin Films Grown by Atomic Layer Deposition

원자층 증착법으로 형성된 Al2O3 박막의 질소 도핑에 따른 실리콘 표면의 부동화 특성 연구

  • Hong, Hee Kyeung (Department of Materials Science and Engineering, Chonnam National University) ;
  • Heo, Jaeyeong (Department of Materials Science and Engineering, Chonnam National University)
  • 홍희경 (전남대학교 신소재공학부) ;
  • 허재영 (전남대학교 신소재공학부)
  • Received : 2015.12.04
  • Accepted : 2015.12.23
  • Published : 2015.12.30

Abstract

To improve the efficiency of the Si solar cell, high minority carrier life time is required. Therefore, the passivation technology is important to eliminate point defects on the silicon surface, causing the loss of minority carrier recombination. PECVD or post-annealing of thermally-grown $SiO_2$ is commonly used to form the passivation layer, but a high-temperature process and low thermal stability is a critical factor of low minority carrier lifetime. In this study, atomic layer deposition was used to grow the $Al_2O_3$ passivation layer at low temperature process. $Al_2O_3$ was selected as a passivation layer which has a low surface recombination velocity because of the fixed charge density. For the high charge density, an improved minority carrier lifetime, and a low surface recombination, nitrogen was doped in the $Al_2O_3$ thin film and the improvement of passivation was studied.

실리콘 태양전지의 효율을 향상하기 위해서는 소수 캐리어의 높은 수명이 필수조건이다. 따라서, 이를 달성하기 위한 실리콘 표면결함을 없애줄 수 있는 부동화(passivation) 기술이 매우 중요하다. 일반적으로 PECVD 법이나 열산화 공정을 통해 얻어진 $SiO_2$ 박막이 부동화 층으로 많이 사용되나 1000도에 이르는 고온 공정과 낮은 열적 안정성이 문제로 여겨진다. 본 연구에서는 원자층 증착법을 이용하여 400도 미만의 저온 공정을 통해 $Al_2O_3$ 부동화 박막을 형성하였다. $Al_2O_3$ 박막은 고유의 음의 고정 전하밀도로 인해 낮은 표면 재결합속도를 보이는 것으로 알려져 있다. 본 연구에서는 질소 도핑을 통해 높은 음의 고정 전하 밀도를 얻고 이를 통해 좀 더 향상된 실리콘 표면 부동화 특성을 얻고자 하였다.

Keywords

References

  1. A. W. Blakers, A. Wang, A. M. Milne, J. Zhao and M. A. Green, "22.8% Efficient Silicon Solar Cell", Appl. Phys. Lett., 55, 1363 (1989). https://doi.org/10.1063/1.101596
  2. G. K. Chang, Y. K. Lim and J. C. Jeong, "Textured Surface Epitaxial Base Silicon Solar Cell", J. Microelectron. Packag. Soc., 10(2), 33 (2003).
  3. T.-K. Woo, Y. H. Kim, H.-S. Ahn and S.-Il Kim, "A Study of Reflectance of Textured Crystalline Si Surface Fabricated by using Preferential Aqueous Etching and Grinding Process", J. Microelectron. Packag. Soc., 16(3), 61 (2009).
  4. S. M. George, "Atomic Layer Deposition: An Overview", Chem. Rev., 110, 111 (2010). https://doi.org/10.1021/cr900056b
  5. J. Schmidt, A. Merkle, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels and R. Brendel, "Atomic-layer-deposited Aluminum Oxide for the Surface Passivation of High-efficiency Silicon Solar Cells", Photovoltaic Specialists Conference 2008 (PVSC'08), 33rd IEEE (2008).
  6. R. K. Ahrenkiel and S. W. Johnston, "An Optical Technique for Measuring Surface Recombination Velocity", Sol. Energy Mater. Sol. Cells, 93(5), 645 (2009). https://doi.org/10.1016/j.solmat.2008.12.028
  7. S. K. Oh, H. S. Shin, K. S. Jeong, M. Li, H. Lee, K. Han, Y. Lee, G. W. Lee and H. D. Lee, "A Novel Atomic Layer Deposited $Al_2O_3$ Film with Diluted $NH_4OH$ for High-Efficient c-Si Solar Cell", J. Semicond. Technol. Sci., 14(1), 40 (2014). https://doi.org/10.5573/JSTS.2014.14.1.040
  8. M D. Groner, F. H. Fabreguette, J. W. Elam and S. M. George, "Low-Temperature $Al_2O_3$ Atomic Layer Deposition", Chem. Mater., 16(4), 639 (2004). https://doi.org/10.1021/cm0304546
  9. F. K. Urban, "Ellipsometer Measurement of Thickness and Optical Properties of Thin Absorbing Films", Appl. Surf. Sci., 33, 934 (1988).
  10. S. Kontermann, A. Wolf, D. Reinwand, A. Grohe, D. Biro and R. Preu, "Optimizing Annealing Steps for Crystalline Silicon Solar Cells with Screen Printed Front Side Metallization and an Oxide-Passivated Rear Surface with Local Contacts", Prog. Photovoltaics Res. Appl., 17(8), 554 (2009). https://doi.org/10.1002/pip.919
  11. S. Kontermann, M. Horteis, M. Kasemann, A. Grohe, R. Preu, E. Pink and T. Trupke, "Physical Understanding of the Behavior of Silver Thick-film Contacts on n-type Silicon Under Annealing Conditions", Sol. Energy Mater. Sol. Cells, 93(9), 1630 (2009). https://doi.org/10.1016/j.solmat.2009.04.019

Cited by

  1. PERC 태양전지에서 반사방지막과 p-n 접합 사이에 삽입된 SiOx 층의 두께가 Potential-Induced Degradation (PID) 저감에 미치는 영향 vol.26, pp.3, 2015, https://doi.org/10.6117/kmeps.2019.26.3.075