• Title/Summary/Keyword: $Se_1Sb_2Te_2$

Search Result 50, Processing Time 0.03 seconds

Phase Change Properties of Amorphous Ge1Se1Te2 and Ge2Sb2Te5 Chalcogenide Thin Films (비정질 Ge1Se1Te2 과 Ge2Sb2Te5 칼코게나이드 박막의 상변화특성)

  • Chung Hong-Bay;Cho Won-Ju;Ku Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.918-922
    • /
    • 2006
  • Chalcogenide Phase change memory has the high performance necessary for next-generation memory, because it is a nonvolatile memory with high programming speed, low programming voltage, high sensing margin, low power consumption and long cycle duration. To minimize the power consumption and the program voltage, the new composition material which shows the better phase-change properties than conventional $Ge_2Sb_2Te_5$ device has to be needed by accurate material engineering. In the present work, we investigate the basic thermal and the electrical properties due to phase-change compared with chalcogenide-based new composition $Ge_1Se_1Te_2$ material thin film and convetional $Ge_2Sb_2Te_5$ PRAM thin film. The fabricated new composition $Ge_1Se_1Te_2$ thin film exhibited a successful switching between an amorphous and a crystalline phase by applying a 950 ns -6.2 V set pulse and a 90 ns -8.2 V reset pulse. It is expected that the new composition $Ge_1Se_1Te_2$ material thin film device will be possible to applicable to overcome the Set/Reset problem for the nonvolatile memory device element of PRAM instead of conventional $Ge_2Sb_2Te_5$ device.

Improved Switching Properties of Sb-doped Ge-Se-Te Material (Sb-doping에 의한 Ge-Se-Te의 개선된 스위칭 특성)

  • Chung, Hong-Bay;Nam, Ki-Hyun;Koo, Sang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1260_1261
    • /
    • 2009
  • A detailed investigation and structure of tested samples are clearly presented. As a reference, $Ge_1Se_1Te_2$/Sb only sample was also investigated. We used compound of Ge-Se-Te material for phase-change cell. Actually, the performance properties have been improved surprisingly then conventional Ge-Sb-Te. However, crystallization time was as long as ever for amorphization time. We conducted this esperiment in order to solve that problem by doping-Sb.

  • PDF

The Phase-change Memory Characteristics of Ge1Se1Te2 Thin Films for Sb Photo Doping (Sb 광도핑에 의한 Ge1Se1Te2 박막의 상변화 메모리 특성)

  • Nam, Ki-Hyun;Kim, Jang-Han;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.329-333
    • /
    • 2012
  • For phase transition method, good record sensitivity, low heat radiation, fast crystallization and hi-resolution are essential. Also, a retention time is very important part for phase-transition. In our past papers, we chose composition of $Ge_1Se_1Te_2$ material to use a Se factor which has good optical sensitivity than conventional Sb. Sb/Ge-Se-Te thin films are fabricated and irradiated with UV light source to investigate a reversible phase change by Sb-doped condition. Because of Sb atoms, the Sb inserted sample showed better performance than conventional one. We should note that this novel one showed another possibility for phase-change random access memory.

Phase-Change Properties of the Sb-doped $Ge_1Se_1Te_2$ thin films application for Phase-Change Random Access Memory (상변화 메모리 응용을 위한 Sb을 첨가한 $Ge_1Se_1Te_2$ 박막의 상변화 특성)

  • Nam, Ki-Hyeon;Choi, Hyuk;Ju, Long-Yun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.156-157
    • /
    • 2007
  • For tens of years many advantages of Phase-Change Random Access Memory(PRAM) were introduced. Although the performance improved gradually, there are some portions which must be improved. So, we studied new constitution of $Ge_1Se_1Te_2$ chalcogenide material to improve phase transition characteristic. Actually, the performance properties have been improved surprisingly. However, crystallization time was as long as ever for amorphization time. We conducted this experiment in order to solve that problem by doping-Sb.

  • PDF

P-type and N-type $Bi_2Te_3/PbTe$ Functional Gradient Materials for Thermoelectric Power Generation

  • Lee, Kwang-Yong;Oh, Tae-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1223-1224
    • /
    • 2006
  • The p-type $(Bi_{0.2}Sb_{0.8})_2Te_3/(Pb_{0.7}Sn_{0.3})$Te functional gradient material (FGM) was fabricated by hot-pressing the mechanically alloyed $(Bi_{0.2}Sb_{0.8})_2Te_3$ and the 0.5 at% $Na_2Te-doped$ $(Pb_{0.7}Sn_{0.3})Te$ powders. Also, the n-type $Bi_2(Te_{0.9}Se_{0.1})_3/PbTe$ FGM was processed by hot-pressing the mechanically alloyed $Bi_2(Te_{0.9}Se_{0.1})_3$ and the 0.3 wt% Bi-doped PbTe powders. With ${\Delta}T$ larger than $300^{\circ}C$, the p-type $(Bi_{0.2}Sb_{0.8})_2Te_3/(Pb_{0.7}Sn_{0.3})Te$ FGM exhibited larger thermoelectric output power than those of the $(Bi_{0.2}Sb_{0.8})_2Te_3$ and the 0.5 at% $Na_2Te-doped$ $(Pb_{0.7}Sn_{0.3})Te$ alloys. For the n-type $Bi_2(Te_{0.9}Se_{0.1})_3/PbTe$ FGM, the thermoelectric output power superior to those of the $Bi_2(Te_{0.9}Se_{0.1})_3$ and the 0.3 wt% Bi-doped PbTe was predicted at ${\Delta}T$ larger than $300^{\circ}C$.

  • PDF

Performance of $(Bi, Sb)_2 (Te, Se)_3$ Thin Film Thermoelectric Modules ($(Bi, Sb)_2 (Te, Se)_3$ 열전박막소자의 작동특성)

  • 김일호;이동의
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.3
    • /
    • pp.309-315
    • /
    • 1994
  • 순간증착법으로 p형(Bi0.5Sb1.5Te3)과 n형(Bi2Te24Se0.6)열전박막을 제조하여 상온에서 Seebeck 계 수, 전기전도도 및 열전성능지수를 측정하였다. 또한 금속재 mask를 이용하여 다중접점 박막형 열전소 자를 제작하고 그 작동특성을 조사하였다. 이때 소자의 고온부와 저온부의 온도를 직접측정하기 위하여 copper/constantan 박막을 접점부에 증착하여 열전쌍이 되게 하였다. p/n 접점이 5쌍이 소자의 경우 Peltier 효과에 의해 생성된 최대온도차는 22K이었다.

  • PDF

The properties of Sb-doped $Ge_{1}Se_{1}Te_{2}$ thin films application for Phase-Change Random Access Memory (상변화 메모리 응용을 위한 Sb-doped $Ge_{1}Se_{1}Te_{2}$ 박막의 특성)

  • Nam, Ki-Hyeon;Choi, Hyuk;Ju, Long-Yun;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1329-1330
    • /
    • 2007
  • Phase-change random access memory(PRAM) has many advantages compare with the existing memory. For example, fast programming speed, low programming voltage, high sensing margin, low power consume and long cyclability of read/write. Though it has many advantages, there are some points which must be improved. So, we invented and studied new constitution of $Ge_{1}Se_{1}Te_{2}$ chalcogenide material. Actually, the performance properties have been improved surprisingly. However, crystallization time was as long as ever for amorphization time. In this paper, we studied in order to make set operation time and reset operation voltage reduced. In the present work, by alloying Sb in $Ge_{1}Se_{1}Te_{2}$. we could confirm that improved its set operation time and reset operation voltage. As a result, the method of Sb-alloyed $Ge_{1}Se_{1}Te_{2}$ can be solution to decrease the set operation time and reset operation voltage.

  • PDF