DOI QR코드

DOI QR Code

The Phase-change Memory Characteristics of Ge1Se1Te2 Thin Films for Sb Photo Doping

Sb 광도핑에 의한 Ge1Se1Te2 박막의 상변화 메모리 특성

  • Nam, Ki-Hyun (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Kim, Jang-Han (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Chung, Hong-Bay (Department of Electronic Materials Engineering, Kwangwoon University)
  • 남기현 (광운대학교 전자재료공학과) ;
  • 김장한 (광운대학교 전자재료공학과) ;
  • 정홍배 (광운대학교 전자재료공학과)
  • Received : 2012.03.16
  • Accepted : 2012.03.26
  • Published : 2012.05.01

Abstract

For phase transition method, good record sensitivity, low heat radiation, fast crystallization and hi-resolution are essential. Also, a retention time is very important part for phase-transition. In our past papers, we chose composition of $Ge_1Se_1Te_2$ material to use a Se factor which has good optical sensitivity than conventional Sb. Sb/Ge-Se-Te thin films are fabricated and irradiated with UV light source to investigate a reversible phase change by Sb-doped condition. Because of Sb atoms, the Sb inserted sample showed better performance than conventional one. We should note that this novel one showed another possibility for phase-change random access memory.

Keywords

References

  1. S. R. Ovshinsky, Phys. Rev. Lett., 20, 1450 (1968).
  2. A. Hamada, M. Saito, and M. Kikuchi, Jpn. J. Appl. Phys., 1, 530 (1971).
  3. T. Matsushita, T. Yamagami, and M. Okuda, Jpn. J. Appl. Phys., 11, 422 (1972). https://doi.org/10.1143/JJAP.11.422
  4. R. Barton, C. R. Davis, K. Rubin, and G, Lim, Appl. Phys. Lett., 48, 1255 (1986). https://doi.org/10.1063/1.97031
  5. S. H. Lee, Y. N. Hwang, S. Y. Lee, K. C. Ryoo, S. J. Ahn, H. C. Koa, C. W. leong, Y. T. Kim, G. H. Koh, G. T. Jeong, H. S. Jeong, and K. Kim, VLSI Symp. Tech. Dig., 20 (2004).
  6. S. J. Ahn, Y. N. Hwang, Y. J. Song, S. H. Lee, S. Y. Lee, J. H. Park, C. W. Jeong, K. C. Ryoo, J. M. Shin, Y. Fai, J. H. Oh, G. H. Koh, G. T. Jeong, S. H. Joo, S. H. Choi, Y. H. Son, J. C. Shin, Y. T. Kim, H. S. Jeong, and K. Kim, VLSI Symp. Tech. Dig., 98 (2005).
  7. R. Bez and A. Pirovano, Mater. Sci. Semicond. Process., 7, 349 (2004). https://doi.org/10.1016/j.mssp.2004.09.127
  8. T. Lee, K. B. Kim, B. K. Cheong, T. S. Lee, S. J. Park, K. S. Lee, W. M. Kim, and S. G. Kim, Appl. Phys. Lett., 80, 3313 (2002). https://doi.org/10.1063/1.1476705
  9. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, Nat. Mater., 7, 972 (2008). https://doi.org/10.1038/nmat2330
  10. V. Sousa, Microelectron. Eng., 88, 807 (2011). https://doi.org/10.1016/j.mee.2010.06.042
  11. M. S. Youm, Y. T. Kim, and M. Y. Sung, Microelectron. J., 38, 1034 (2007). https://doi.org/10.1016/j.mejo.2007.07.120
  12. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, J. Appl. Phys., 69, 2849 (1991). https://doi.org/10.1063/1.348620
  13. L. Perniola, V. Sousa, A. Fantini, E. Arbaoui, A. Bastard, M. Armand, A. Fargeis, C. Jahan, J. F. Nodin, A. Persico, D. Blachier, A. Toffoli, S. Loubriat, E. Gourvest, G. B. Beneventi, H. Feldis, S. Maitrejean, S. Lhostis, A. Roule, O. Cueto, G. Reimbold, L. Poupinet, T. Billon, B. D. Salvo, D. Bensahel, P. Mazoyer, R. Annunziata, P. Zuliani, and F. Boulanger, IEEE Electron Dev. Lett., 31, 488 (2010). https://doi.org/10.1109/LED.2010.2044136
  14. K. Wang, D. Wamwangi, S. Ziegler, C. Steimer, and M. Wuttig, J. Appl. Phys., 96, 5557 (2004). https://doi.org/10.1063/1.1803612
  15. H. B. Chung, K. Shin, and J. M. Lee, J. Vac. Sci. Tech., A25, 48 (2007).
  16. J. M. Lee, K. Shin, C. H. Yeo, and H. B. Chung, Jpn. J. Appl. Phys., 45, 5467 (2006). https://doi.org/10.1143/JJAP.45.5467
  17. B. Liu, Z. Song, S. Feng, and B. Chen, Microelectron. Eng., 82, 168 (2005). https://doi.org/10.1016/j.mee.2005.07.007
  18. E. B. Lee, B. K. Ju, and Y. T. Kim, Microelectron. Eng., 86, 1950 (2009). https://doi.org/10.1016/j.mee.2009.03.089
  19. B. J. Madhu, H. S. Jayanna, and S. Asokan, J. Non-Cry. Sol., 355, 2630 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.09.009