• Title/Summary/Keyword: $SO_3$ decomposition

Search Result 294, Processing Time 0.023 seconds

$SO_3$ Decomposition Catalysis in SI Cycle to to Produce Hydrogen (SI 원자력 수소생산을 위한 $SO_3$ 분해반응촉매에 관한 연구)

  • Kim, Tae-Ho;Shin, Chae-Ho;Joo, Oh-Shim;Jung, Kwang-Deog
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.1
    • /
    • pp.21-28
    • /
    • 2011
  • Fe, Ni and Co, typical active components, were dispersed on $Al_2O_3$ and $TiO_2$ for $SO_3$ decomposition. $SO_3$ decomposition was conducted at the temperature ranges from $750^{\circ}C$ to $950^{\circ}C$ using the prepared catalysts. Alumina based catalysts showed the surface areas higher than Titania based catalysts, which resulted from spinel structure formation of alumina based catalysts. Catalytic $SO_3$ decomposition reaction rates were in the order of Fe>Co${\gg}$Ni. The metal sulfate decomposition temperature were in the order of Ni>Co>Fe from TGA/DTA analysis of metal sulfate. During $SO_3$ decomposition, metal sulfate can form on the catalysts. $SO_2$ and $O_2$ can be produced from the decomposition of metal sulfate. In that point of view, the less is the metal sulfate deomposition temperature, the higher can be the $SO_3$ decomposition activity of the metal component. Therefore, it can be concluded that metal component with the low metal sulfate decomposition temperature is the pre-requisite condition of the catalysts for $SO_3$ decomposition reaction.

NUMERICAL ANALYSIS OF A SO3 PACKED COLUMN DECOMPOSITION REACTOR WITH ALLOY RA 330 STRUCTURAL MATERIAL FOR NUCLEAR HYDROGEN PRODUCTION USING THE SULFUR- IODINE PROCESS

  • Choi, Jae-Hyuk;Tak, Nam-Il;Shin, Young-Joon;Kim, Chan-Soo;Lee, Ki-Young
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1275-1284
    • /
    • 2009
  • A directly heated $SO_3$ decomposer for the sulfur-iodine and hybrid-sulfur processes has been introduced and analyzed using the computational fluid dynamics (CFD) code CFX 11. The use of a directly heated decomposition reactor in conjunction with a very high temperature reactor (VHTR) allows for higher decomposition reactor operating temperatures. However, the high temperatures and strongly corrosive operating conditions associated with $SO_3$ decomposition present challenges for the structural materials of decomposition reactors. In order to resolve these problems, we have designed a directly heated $SO_3$ decomposer using RA330 alloy as a structural material and have performed a CFD analysis of the design based on the finite rate chemistry model. The CFD results show the maximum temperature of the structural material could be maintained sufficiently below 1073 K, which is considered the target temperature for RA 330. The CFD simulations also indicated good performance in terms of $SO_3$ decomposition for the design parameters of the present study.

Effect of CH4 Addition in Case of Decomposition of NOx, SOx by Discharge Plasma (방전플라스마에 의한 NOx, SOx 분해시 메탄첨가의 영향)

  • Kang, Hyun-Choon;Woo, In-Sung;Kang, An-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.70-77
    • /
    • 2000
  • For hazardous air pollutants(HAP) such as NO, $NO_2$ and $SO_2$ decomposition efficiency, power consumption, and applied voltage were investigated by SPCP(Surface induced discharge Plasma Chemical Processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of HAP with various electric frequencies(5~50 kHz), flow rates(100~1,000 mL/min), initial concentrations(100~1,000 ppm) and additive($CH_4$) were measured and the products were analyzed with FT-IR. Experimental results showed that for the frequency of 10 kHz, the highest decomposition efficiency of 94.3 % for NO, 84.7 % for $NO_2$ and 99 % far $SO_2$ were observed at the power consumptions of 19.8, 20 and 19W, respectively, and that decomposition efficiency decreased with increasing frequency above 20 kHz. And decomposition efficiency per unit power were 5.21 %/W for $SO_2$, 4.76 %/W for NO and 4.24 %/W for $NO_2$ and the highest decomposition efficiency was observed with $SO_2$. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. When the additive of $CH_4$ was used, decomposition efficiency was increased with increasing $CH_4$ content, and NO, $NO_2$ and $SO_2$ were almost completely decomposed with the efficiency of 99 %, 98 % and 99 %, respectively and therefore $CH_4$ was a good additive material. The optimum power for the maximum decomposition efficiency were 7.5 W for $SO_2$, 9.5 W for NO and 15.5 W for $NO_2$, respectively. Optimum power with the maximum decomposition efficiency were 9.5 W at 1,000 ppm of NO, 7~8 W at 100~500 ppm of NO and 15.5 W at all concentration range of $NO_2$ and 11.5 W at 1,000 ppm, 4.9 W at 500 ppm, 3.7 W at 100~300 ppm of $SO_2$ and power efficiency was best in these case.

  • PDF

A domain decomposition method applied to queuing network problems

  • Park, Pil-Seong
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.3
    • /
    • pp.735-750
    • /
    • 1995
  • We present a domain decomposition algorithm for solving large sparse linear systems of equations arising from queuing networks. Such techniques are attractive since the problems in subdomains can be solved independently by parallel processors. Many of the methods proposed so far use some form of the preconditioned conjugate gradient method to deal with one large interface problem between subdomains. However, in this paper, we propose a "nested" domain decomposition method where the subsystems governing the interfaces are small enough so that they are easily solvable by direct methods on machines with many parallel processors. Convergence of the algorithms is also shown.lso shown.

  • PDF

Photocatalytic Degradation Mechanism of Methyl Mercaptan using $TiO_2$ (TiO$_2$를 이용한 메틸메르캅탄의 광촉매 분해메커니즘)

  • Lee, Byung-Dae;Lee, Jin-Shik;Kim, Yeoung-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.296-300
    • /
    • 2007
  • This paper presents applicability of photocatalytic decomposition of methyl mercaptan using $TiO_2$. A quartz reactor was used in order to elucidate reaction pathway in photocatalytic decomposition of methyl mercaptan. Experimental results showed that more than 99.9% of methyl mercaptan was decomposed within 30 minutes. It was found that the photocatalytic decomposition of methyl mercaptan followed pseudo first order and its reaction coefficient was $0.05min^{-1}$ During 30 minutes in the photocatalytic reaction, the concentration of methyl mercaptan, dimethyl disulfide, $SO_2$, $H_2SO_4$, COS, $H_2S$ were determined. These results showed that 64% of methyl mercaptan were compensated for the increase in sulfur after 30 minutes through the mineralization. The proposed main photocatalytic decomposition pathway of methyl mercaptan was methyl $mercaptan{\rightarrow}dimethyl$ $disulfide{\rightarrow}SO_2{\rightarrow}H_2SO_4$.

A Study on the Thermal Decomposition of Alunite (명반석의 열분해)

  • 김형석;조동성
    • Resources Recycling
    • /
    • v.7 no.5
    • /
    • pp.33-40
    • /
    • 1998
  • The formation reation of anhydrite (CaSO$_{4}$) depends upon the amount and velocity of the SO$_{3}$(g) and CaO(s) produced in the process of the thermal decomposition of alunite[K$_{2}SO_{4}{\cdot}Al_{2}(SO_{4})_{3}{\cdot}4Al(OH)_{3}$] and limestone (CaCO$_{3}$) respectively. Therefore, this study had carried out to investigate the amount and velocity of SO$_{3}$(g) produced by roasting alunite and pyrolytic materials. In air, alunite was transfouned into KAl(SO$_{4})_{2}$ and Al$_{2}O_{3}$ by dehydration at 500~580$^{\circ}C$. The dehydration velocity of alunite was found to be kt=(1-(1-${\alpha})^{1/3})^{2}$, the activation energy, 73.01 kcal/mol. SO$_{3}$(g) ware slowly produced by the thermal decomposition of KAl(SO$_{2})_{2}$, at 580~700$^{\circ}C$, rapidly, at 700~780$^{\circ}C$, The pyrolysis velocity of KAl(SO$_{4})_{2}$ was found to be kt=1-(1-${\alpha})^{1/1}$; activation energy, 66.84kcal/mol. The SiO$_{2}$ and kaolinite in alunite ore scarcely affected the temperature and velocity in which SO$_{3}$(g) were produced.

  • PDF

A Study on the Characteristics of Pyrolysis of Methyl Ethyl Ketone Peroxide with Addition of Sulfuric Acid (황산의 첨가에 따른 Methyl Ethyl Ketone Peroxide의 열분해 특성에 관한 연구)

  • Jung Doo-Kyun;Choi Jae-Wook;Lee In-Sik
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.52-56
    • /
    • 2004
  • An experiment to examine the characteristics of pyrolysis of Methyl Ethyl Ketone Peroxide was conducted in an air-present environment, using TG-DTA. Decomposition starting temperature was decreased as the increase of 98% concentrated H₂SO₄ to the MEKPO and the maximum decomposition temperature of MEKPO was 116.8℃. The activated energy calculated from differential method of pure MEKPO, MEKPO with 1 wt%, 3wt%, and 5wt% of H₂SO₄ were 0.576㎉/mo1, 0.355㎉/㏖, 0.284㎉/㏖ and 0.258㎉/㏖ respectively.

The Direct Decomposition of Ion-Exchange Resins by Fenton's Reagent (펜톤시약에 의한 이온교환수지의 직접산화분해)

  • Kim, Kil-Jeong;Shon, Jong-Sik;Ryu, Woo-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.221-227
    • /
    • 2007
  • Fenton's reagent is applied to directly decompose the ion-exchange resins, IRN-78 and the mixed resin with IRN-77. The newly applied procedures is to dry the resin first and the catalyst solution is completely absorbed into the resin, then a limited dose of $H_2O_2$ is introduced for an effective reaction between the reagents within the resin. As a characteristic on the decomposition of IRN-78, the resin mixture should be heated to $40^{\circ}C$ to induce the initial reaction and lag time is also needed for about 20 minutes until the main reaction occurs. The effectiveness of the decomposition is investigated using $CuSO_4,\;Cu(NO_3)_2\;and\;FeSO_4$ as a catalyst and the decomposition rate is compared depending on the concentration of each catalyst and the amount of $H_2O_2$. The most effective catalyst was found to be $FeSO_4$ for IRN-78 alone and the mixed resin with IRN-77, and $FeSO_4$ showed a special effect that the reaction was initiated without heating and a lag time. Furthermore, the optimum concentration of the catalyst for each resin and the mixed one is suggested in the view point of the amount of $H_2O_2$ needed and the stability of the decomposition reaction.

  • PDF

A Study on Thermal Characteristics on Polymeric Floorings (고분자물질 바닥재의 열적특성에 관한 연구)

  • Lee, Nae-Woo;Kim, Nam-Seok;Moon, Byoung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.38-45
    • /
    • 2006
  • Polymeric floorings mainly consisted of PVC are easily decomposed by many kinds of hot environmental factors, then generate hazardous asphyxiate gases and/or toxic gases etc. Therefore the mechanism of decomposition and quantitative toxic indices of products are very important for preventing safety and health disasters, especially in case of confined area. So we have investigated decomposition kinetics, numbers of process involved, toxicity indices of product and so on, using DSC, TGA, FT-IR and Pyrolyzer-GC/MS. The thermal decomposition process of polymeric floorings can be mainly divided by dehydrochlorinated reaction and polyene decomposition step, and activation energies of those are approximately $53.93{\sim}62.42kcal/mol$. Especially lethal concentration($LC_{50}$), fractional effective dose (FED) are calculated by measuring the amount of decomposition product. The values on $LC_{50}$ of sample G are ranged $2,003{\sim}2,019(mg/m^{3})$ in case of sample K and H are $1,877,\;1,998(g/m^{3})$ respectively. Even if the results are estimated by calculation method without animal test and/or clinical demonstration, these values could be very useful data for occupational health, hygiene and safety control.

The Effect of SO2 in Flue Gas on the SCR Activity of V/TiO2 (배가스 중 SO2가 V/TiO2 SCR활성에 미치는 영향)

  • Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.490-497
    • /
    • 2006
  • $V_{2}O_{5}$/$TiO_{2}$ catalyst can be deactivated by ammonium salts formed by $SO_{2}$ oxidation and unreacted ammonium in presence of $SO_{2}$ in flue gas. The deactivation of catalyst by $SO_{2}$ depends on the $SO_{2}$ oxidation to $SO_{3}$. The oxidation of $SO_{2}$ is weakly affected by oxygen concentration, and strongly by the amount of vanadium loaded onto titania supports. Because unreacted ammonia is one of elements to form the ammonium salts, it is important to control the mole ratio of $NH_{3}/NOx$ in SCR. Thus the experiments about $NH_{3}/NOx$ were carried out. The reason of low activity of catalyst deactivated by ammonium salts is the change of pore volume. And TPD (Temperature Programmed Decomposition) was performed to find the decomposition of ammonium bisulfate on deactivated catalyst.