• 제목/요약/키워드: $SO_2$ gas corrosion

검색결과 82건 처리시간 0.024초

고유황 보일러에서의 Sulfur Trioxide의 억제에 대한 연구 (Study on the Suppression of Sulfur Trioxide in High Sulfur Boiler)

  • 최성부
    • 한국응용과학기술학회지
    • /
    • 제28권4호
    • /
    • pp.455-463
    • /
    • 2011
  • The average sulfur content of crude oil is 2.2%. Coal is about 0.3 to 4.0 percent of the sulfur gases or particles being discharged into the atmosphere through the chimney as 1 to 2% $SO_3$(Sulfur trioxide) and about 95% of the $SO_2$ is reported. $SO_3$ gas, which has many different causes of, as the combustion of sulfur containing fuel during the air due to the excess $SO_2$ gas is oxidized to $SO_3$ gas. Sulfur trioxide emitted from high sulfur heavy oil fired boiler caused white plume in stack and high temperature and cold end corrosion of facilities. So, in order to control sulfur trioxide concentration of Fuel gas in boiler, various of additives are used in other foreign. They are injected to Fuel Oil and consumed in boiler and reduce ash and the conversion rate of sulfur trioxide. In domestic, MgO compounds are used as additives but the total volume of them are made from other foreign company. In this study, MgO compounds were developed with liquid MgO compounds and field application was accomplished. The effect of newly developed chemicals and process were nearly equal to foreign products. In Consequent, the chemicals and process produced by newly developed technology can be substituted for foreign products and reduce the cost of plant operation.

Cathodic Protection of Onshore Buried Pipelines Considering Economic Feasibility and Maintenance

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권4호
    • /
    • pp.158-168
    • /
    • 2016
  • During the installation of crude oil or gas pipelines, which pass through onshore buried pipelines or onshore pipeline from subsea pipeline to onshore plant, countermeasures need to be implemented so as to ensure a sufficient design life by protecting the steel pipes against corrosion. This can be achieved through impressed current cathodic protection method for onshore pipelines and through galvanic sacrificial anode corrosion protection method for offshore pipelines. In particular, in the case of impressed current cathodic protection, isolation joint flanges should be used. However, this makes maintenance control difficult with its installation having a negative impact on price. Therefore, in this study, the most suitable methodology for onshore pipeline protection between galvanic sacrificial anode corrosion protection and impressed current cathodic protection method will be introduced. In oil and gas transportation facilities, the media can be carried to the end users via onshore buried and/or offshore pipeline. It is imperative for the field operators, pipeline engineers, and designers to be corrosion conscious as the pipelines would undergo material degradations due to corrosion. The mitigation can be achieved with the introduction of an impressed current cathodic protection method for onshore buried pipelines and a galvanic sacrificial anode corrosion protection method for offshore pipelines. In the case of impressed current cathodic protection, isolation joint flanges should be used to discontinuity. However, this makes maintenance control to be difficult when its installation has a negative impact on the price. In this study, the most suitable corrosion protection technique between galvanic sacrificial anode corrosion protection and impressed current cathodic protection is introduced for (economic life of) onshore buried pipeline.

다공성 세라믹(${\alpha}-Al_{2}O_{3}$)를 이용한 지중 매설형 기준전극 (The Development of Buried Type Reference Electrode Using Porous Ceramic(${\alpha}-Al_{2}O_{3}$))

  • 배정효;하윤철;하태현;이현구;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.145-147
    • /
    • 2005
  • In present, most of metallic structures(gas pipeline, oil pipeline, water pipeline, etc) are running parallel with subway and power line in seoul. Moreover subway system and power line make a stray current due to electrical corrosion on metallic structures. The owner of metallic structures has a burden of responsibility for the protection of corrosion and the prevention against big accident such as gas explosion or soil pollution and so on. So, they have to measure and analyze the data about P/S(Pipe to Soil) potential due to stray current of subway system. So, we have developed the Real-time Wireless Remote Monitoring System for Stray Current of Subway System. In this system, the permanent buried type reference electrode is necessary. In this paper, results of development of buried type reference electrode using porous ceramic$({\alpha}-Al_{2}O_{3})$ are presented.

  • PDF

650 ℃의 10%O2+10%CO2 가스 환경에서 2.25Cr-1Mo강의 산화특성에 미치는 KCl(s)과 K2SO4(s)의 영향 (Effect of KCl(s) and K2SO4(s) on Oxidation Characteristics of the 2.25Cr-1Mo Steel in 10%O2+10%CO2 Gas Environment at 650 ℃)

  • 정광후;김성종
    • Corrosion Science and Technology
    • /
    • 제19권1호
    • /
    • pp.43-50
    • /
    • 2020
  • In this study, the effects of KCl(s) and K2SO4(s) on the oxidation characteristics of 2.25Cr-1Mo steel were investigated for 500 h in 10O2 + 10CO2 (vol%) gas environmen at 650 ℃. Oxidation kinetics were characterized by weight gain, oxide layer thickness, and fitted models for the experiment data were proposed. The fitted models presented considerable agreement with the experimental data. The oxide layer was analyzed using the scanning electron microscope, optical microscope, and energy dispersive X-ray spectroscopy. The oxidation kinetics of 2.25Cr-1Mo steel with KCl and K2SO4 coatings showed significantly different oxidation kinetics. KCl accelerated the oxidation rate very much and had linear oxidation behavior. In contrast, K2SO4 had no significant effect, which had parabolic kinetics. The oxide layer was commonly composed of Fe2O3, Fe3O4, and FeCr2O4 spinel. KCl strongly accelerated the oxidation rates of 2.25Cr-1Mo steel in the high-temperature oxidation environment. Conversely, K2SO4 had little effect on the oxidation rates.

1.25Cr-0.5Mo강을 이용한 합성가스 조성 변화에 따른 SNG 1차반응기의 부식특성에 관한 실험적 연구 (Experimental Study on Corrosion Characteristics of 1.25Cr-0.5Mo in the 1st-mathanator reactor for Synthetic Natural Gas according to Gas Compositions)

  • 김진현;조홍현
    • 한국산학기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.709-716
    • /
    • 2016
  • 최근 급속한 플랜트 설비의 발전과 더불어 각종 기계 구조물들의 운전조건이 가혹해지고 사용시간이 길어짐에 따라 신뢰성에 대한 문제가 제기되고 있다. 특히, SNG 설비에 사용되는 재료는 설계조건에 따라 1.25Cr-0.5Mo 또는 2.25Cr-1Mo강과 같은 내열강들이 주로 사용된다. 본 연구에서는 Lab-scale용 합성천연가스 반응기를 제작하여 생산공정 반응기 재질인 1.25Cr-0.5Mo강을 이용하여 실제 SNG 공정중 1차반응기와 동일한 운전 조건에서 부식 특성에 대하여 실험적 연구를 진행하였다. 1.25Cr-0.5Mo강을 운전 시간에 따라 각각 배출조성 조건과 주입조성 조건에 노출시켜 부식에 대한 실험을 수행하였으며 실험 결과 내구성에 가장 영향을 미치는 요소는 수소로 인한 수소취성과 산화 부식임을 알 수 있었으며, 배출조성보다 주입조성에서 더 빠른 부식이 발생함을 확인하였다. 그러나 배출조성 조건에서는 산화부식과 더불어 수소취성에 의한 부식이 동시에 발생하여 장시간 운전 후 부식정도가 갑자기 증가하고 부식강도가 급격히 강해지는 것을 나타났다. 또한 주입조성에서는 산화물들이 시편에 흡착되어 두꺼운 산화층을 형성시켰으며 이로 인하여 재료의 내산화성이 크게 저하되는 것으로 확인되었다.

5% 황산용액에서 배기밸브 보수 용접부의 부식 특성에 미치는 용접방법과 용접봉의 영향-1 (Effect of Welding method and Welding Material to Corrosion Property of Repair Weld Zone for Exhaust Valve in 5% H2SO4 Solution -1)

  • 김진경;조황래;이명훈;김윤해;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.744-752
    • /
    • 2007
  • Recently a fuel oil of the diesel engine in the ship is being changed with low quality as the oil price is higher more and more. Therefore the wear and corrosion in all parts of the engine like cylinder liner ring groove of piston crown, spindle and seat ring of exhaust valve are increased with using of heavy oil of low quality In particular the degree of wear and corrosion in between valve spindle and seat ring are more serious compared to the other parts of the engine due to operating in severe environment such as the high temperature of exhaust gas and repeating impact. Thus the repair weld to the valve spindle and seat ring is a unique method to prolong the life of the exhaust valve in an economical point of view In this study. corrosion property of both weld metal zone and base metal was investigated with some electrochemical methods such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram and polarization resistance etc. in 5% $H_2SO_4$ solution. in the case of being welded with some welding methods and welding materials to the exhaust valve specimen as the base metal. In all cases. the values of hardness of the weld metal zone were more high than that of the base metal. And their corrosion resistance were also superior to the base metal. The weld metal of A2F(AC SMAW: 2 pass welding with foreign electrode) showed a relatively good results to the corrosion resistance as well as the hardness compared to the ether welding methods and welding materials. Moreover it indicated that hardness of the weld metal by the domestic electrode was considerably high compared to that of the foreign electrode.

산성비 및 배연탈황설비 환경에서 Ni 첨가에 따른 저합금강의 내식성 비교연구 (Comparative Study of Ni effect on the Corrosion Behavior of Low Alloy Steels in FGD and Acid Rain Environments)

  • 한준희;;장영욱;김정구
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.558-566
    • /
    • 2009
  • The alloying effect of a small amount of nickel on low alloy steel for application to flue gas desulfurization(FGD) systems was studied. The structural characteristics of the rust layer were investigated by scanning electron microscopy(SEM). The electrochemical properties were examined by means of potentiostatic polarization test, potentiodynamic polarization test, and electrochemical impedance spectroscopy(EIS) in a modified green death solution of 16.9 vol.% $H_2SO_4$+0.35 vol.% HCl at $60^{\circ}C$ and an acid rain solution of $6.25{\times}10^{-5}M\;H_2SO_4+5.5{\times}10^{-3}M\;NaCl$ at room temperature. It was found that as the amount of nickel increased, the corrosion rate increased in the modified green death solution, which seemed to result from micro-galvanic corrosion between NiS and alloy matrix. In acid rain solution, the corrosion rate decreased as the amount of nickel increased due to the repulsive force of $NiFe_2O_4$ rust against $Cl^-$ ions by electronegativity.

Nd:YAG 레이저를 이용한 순티타늄판의 겹치기 용접성 (Lab Weldability of Pure Titanium by Nd:YAG Laser)

  • 김종도;곽명섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.315-322
    • /
    • 2008
  • Titanium and its alloys have excellent corrosion resistance, high strength to weight ratios and creep properties in high temperature, which make them using many various fields of application. Especially, pure titanium, which has outstanding resistance for the stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion, brings out to the best material for the heat exchanger, ballast tank, desalination facilities, and so on. Responding to these needs, welding processes for titanium are also being used GTAW, GMAW, PAW, EBW, LBW, resistance welding and diffusion bonding, etc. However, titanium is very active and highly susceptible to embrittlement by oxygen, nitrogen, hydrogen and carbon at high temperature, so it needs to shield the weld metal from the air and these gases during welding by non-active gas. In this study, it was possible to get sound beads without humping and spatter with a decrease of peak power according to increase of pulse width, change of welding speed and overlap rate for heat input control, and shield conditions at pulsed laser welding of titanium plates for Lap welding.

The Development and Application of a External Coating for Buried Pipeline Rehabilitation

  • Zhang, Liping;Lin, Zhu;Zhang, Qibin;Qin, Yanlong;Wang, Xueying
    • Corrosion Science and Technology
    • /
    • 제2권3호
    • /
    • pp.161-163
    • /
    • 2003
  • With the development of Chinese petroleum and gas industry, about 20,000 km long-distance pipeline and 250,000 km gathering pipeline have been constructed in China. After operating for many years, most of the coatings on buried pipelines have aged so severe that the steel pipes are subject to corrosion environment underground. Focusing on the need of external coating for buried pipeline rehabilitation, a new type of coating has been developed. The development and application of the coatings has been introduced in this paper.

석탄-바이오매스 혼소발전 분위기에서 Fe-Cr-W 강의 고온부식 연구 (Study of High Temperature Corrosion of Fe-Cr-W Steel in Coal-Biomass Co-firing Power Plant Environment)

  • 김민정;샤오샤오;이동복
    • 한국표면공학회지
    • /
    • 제52권5호
    • /
    • pp.251-257
    • /
    • 2019
  • Fe-9Cr-2W steels were corroded at $600-800^{\circ}C$ for up to 100 hr in ($Na_2SO_4-K_2SO_4-Fe_2O_3$)-($CO_2-0.3%SO_2-6%O_2$) mixed gas. The poor condition samples formed thick oxide scales that consisted primarily of $Fe_2O_3$ as the major oxide and $Fe_3O_4$, FeO as the minor one through preferential oxidation of Fe. Fe-9Cr-2W steels corroded fast, forming thick and non-protective scale. The scale divided into the outer and inner layer, which consisted of the outer Fe-O layer and the inner (Fe,Cr)-O layer containing some (Fe,Cr)-S.