• Title/Summary/Keyword: $PtO_x$

Search Result 463, Processing Time 0.031 seconds

Electrical and Structural Properties of ZnO:Pt Films Prepared by Ultrasonic Spray Pyrolysis (초음파분무열분해법으로 제조한 ZnO:Pt막의 전기적 및 구조적 특성)

  • Ma, Tae-Young;Park, Ki-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.66-71
    • /
    • 2004
  • Pt-doped zinc oxide (ZnO:Pt) films were deposited by ultrasonic spray pyrolysis. Resistivity variation with Pt concentration was measured. The Pt distribution in ZnO:Pt films was studied through Auger Electron Spectroscopy (AES). The ZnO:Pt films were annealed in the ambient of air, water vapor and ozone, respectively. The variation in crystallographic properties and surface morphologies with respect to the annealing condition was observed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The resistivity variation of the films with the annealing condition was measured. Finally, Atomic Force Microscopy (AFM) measurements were carried out to study the effects of the annealing on the roughness of ZnO:Pt films.

Low-temperature Oxidation of Odor Compounds over La-based Perovskite Catalyst (란탄 기반 페롭스카이트 촉매를 이용한 악취 유발 물질의 저온 산화 반응)

  • Bang, Yong-Ju;Seo, Jeong-Gil;Lee, Gi-Chun;Park, Chan-Jung;Kim, Hyung-Tae;Song, In-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.168-174
    • /
    • 2011
  • Various La-based perovskite catalysts were prepared by a Pechini method, and they were applied to the low-temperature oxidation of odor compounds exhausted from waste food treatment process for effective deodorization. Quantitative and qualitative analyses of exhausted gas were conducted to measure the amount of major odor compounds with respect to operation time. A standard odor sample composed of major odor compounds was then prepared for use as a feed for oxidation reaction system. Various transition metal(M)-substituted La-based perovskite catalysts ($LaMO_{3}$: M=Cr, Mn, Fe, Co, and Ni) were prepared and applied to the oxidation of odor compounds in order to investigate the $LaNiO_3$ catalyst showed the best catalytic performance. Pt-substituted perovskite catalysts ($LaNi_{1-x}Pt_{x}O_{3}$: x=0, 0.03, 0.1, and 0.3) were then prepared for enhancing the catalytic performance. It was found that $LaNi_{0.9}Pt_{0.1}O_{3}$ catalyst served as the most efficient catalyst. Supported perovskite catalysts ($XLaNi_{0.9}Pt_{0.1}O_{3}/Al_{2}O_{3}$: X=perovskite content(wt%), 0, 10, 20, 30, 40, 50, and 100) were finally applied for the purpose of maximizing the catalytic performance of perovskite catalyst in the low-temperature oxidation reaction. Catalytic performance of $XLaNi_{0.9}Pt_{0.1}O_{3}/Al_{2}O_{3}$ catalysts showed a volcano-shaped curve with respect to perovskite content. Among the catalysts tested, $20LaNi_{0.9}Pt_{0.1}O_{3}$/$Al_{2}O_{3}$ catalyst exhibited the highest conversion of odor compounds of 88.7% at $180^{\circ}C$.

Dielectric Properties and Phase Transformation of Poled <001>-Oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals (분극된 <001> 방위 Pb(Mg1/3Nb2/3)O3-PbTiO3 단결정의 유전 특성 및 상전이)

  • Lee, Eun-Gu;Lee, Jae-Gab
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.342-345
    • /
    • 2012
  • The dielectric properties and phase transformation of poled <001>-oriented $Pb(Mg_{1/3}Nb_{2/3})O_3-x%PbTiO_3$(PMN-x%PT) single crystals with compositions of x = 20, 30, and 35 mole% are investigated for orientations both parallel and perpendicular to the [001] poling direction. An electric-field-induced monoclinic phase was observed for the initial poled PMN-30PT and PMN-35PT samples by means of high-resolution synchrotron x-ray diffraction. The monoclinic phase appears from $-25^{\circ}C$ to $100^{\circ}C$ and from $-25^{\circ}C$ to $80^{\circ}C$ for the PMN-30PT and PMN-35PT samples, respectively. The dielectric constant (${\varepsilon}$)-temperature (T) characteristics above the Curie temperature were found to be described by the equation$(1/{\varepsilon}-1/{\varepsilon}_m)^{1/n}=(T-T_m)/C$, where ${\varepsilon}_m$ is the maximum dielectric constant and $T_m$ is the temperature giving ${\varepsilon}_m$, and n and C are constants that change with the composition. The value of n was found to be 1.82 and 1.38 for 20PT and 35PT, respectively. The results of mesh scans and the temperature-dependence of the dielectric constant demonstrate that the initial monoclinic phase changes to a single domain tetragonal phase and a to paraelectric cubic phase. In the ferroelectric tetragonal phase with a single domain state, the dielectric constant measured perpendicular to the poling direction was dramatically higher than that measured in the parallel direction. A large dielectric constant implies easier polarization rotation away from the polar axis. This enhancement is believed to be related to dielectric softening close to the morphotropic phase boundary.

Surface Properties of the etched Pt thin films by Inductive Coupled plasma (ICP로 식각된 Pt 박막의 표면특성)

  • 김창일;권광호;김태형;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.285-288
    • /
    • 1997
  • Generally the high dielectric films, such as PZT(Pb(Z $r^{1-x}$ $Ti_{x}$ ) $O_3$) and BST(B $a_{l-x}$S $r_{x}$ Ti $O_3$) have been formed on the Pt thin films. However it is generally known that the dry etching of Pt is difficult because of its chemical stability. So, the dry etching of Pt remains at the preliminary work. Therefore, in this study, Pt etching mechanism was investigated with Ar/C $l_2$gas plasma by using XPS(X-ray photoelectron spectroscopy) and QMS(Quadrupole mass spectrometry). Ion current density was measured with Ar/C $l_2$gas plasma by using single Langmuir probe. XPS results shoved that the atomic % of Cl element on the etched Pt sample increased with increasing Ar/(Ar+C $l_2$). And QMS results showed that the increase of Ar partial pressure in the plasma resulted in the improvement of C $l_2$dissociation and Cl redical formation and simultaniously the increase of ion bombardment effects.s.s.

  • PDF

Characteristics of SO2 Oxidation of Pt/TiO2 Catalyst according to the Properties of Platinum Precursor (Platinum Precursor 특성에 따른 Pt/TiO2 촉매의 SO2 산화 반응특성 연구)

  • Kim, Jae Kwan;Park, Seok Un;Nam, Ki Bok;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.368-376
    • /
    • 2020
  • In this study, an analysis on the reaction characteristics of a catalyst using platinum (Pt) as an active oxidation metal catalyst for controlling SO2 was performed. Pt/TiO2 catalyst was prepared by using Pt as various precursor forms on a titania (TiO2) support, and used for the experiment. There was no difference in performance of SO2 oxidation according to Pt valence states such as Pt2+ or Pt4+ on Pt/TiO2, and Pt chloride species such as PtClx reduces SO2 oxidation performance. In addition, as a result of analyzing the valence state of the catalyst before and after the SO2 oxidation reaction by XPS analysis, a decrease in lattice oxygen and an increase in surface chemisorbed oxygen after the SO2 oxidation reaction were confirmed. Therefore it can be suggested that the oxidation reaction of SO2 when using the Pt/TiO2 catalyst is the major one following the Mar-Van Krevelen mechanism where the reaction of lattice oxygen corresponding to PtOx and the oxidation-reduction reaction by oxygen vacancy occur. Overall, it can be confirmed that the oxygen species of PtOx (Pt2+ or Pt4+) present on the catalyst acts as a major active site.

Preparation and Catalytic Properties of Pt/CNT/TiO2 Composite

  • Chen, Ming-Liang;Zhang, Feng-Jun;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.269-275
    • /
    • 2010
  • In this study, we successfully prepared CNT/$TiO_2$, Pt/CNT and Pt/CNT/$TiO_2$ composites and investigated their photocatalytic activity in MB solution by irradiation under UV light. Fourier transform infrared (FT-IR) spectroscopy was used to characterize the functional group on the surface of MWCNTs, which oxidized by MCPBA. Brunauer-Emmett-Teller (BET) surface area, transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) were used to analyze the prepared composites. The results of the decomposition of the MB solution indicated that the Pt/CNT/$TiO_2$ composite had the best photocatalytic activity among the three kinds of composites.

Structural and Magnetic Properties of $FePt-B_x\;at.\%$ (X=5, 10, 15, 25 and 33) thin Film by Post-Annealing

  • Lee Young-min;Lee Byeong-Seon;Lee Chan-Gyu;Koo Bon-Heun;Shimada Y.;Kitakami O.;Okamoto S.;Miyazaki T.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2005.12a
    • /
    • pp.154-155
    • /
    • 2005
  • Multi-layer film of $MgO/(FePt-B)_{50nm}/ MgO$ was deposited on Si(100) substrates by RF magnetron sputtering. The boron chips were uniformly placed oil tile FePt target. The boron content of thin film was found to be about 5, 10, 15, 25 and $33 at\%$ by using a CAMECA SX-51 wavelength dispersive spectroscopy (WDX). It is observed that X-ray diffraction patterns of FePt-B film by post-annealing exhibited a transformation from disordered fcc structure to ordered $Ll_0$ phase with fct structure from around $400^{\circ}C$. By adding B, annealing temperature for ordering is about $200^{\circ}C$ lower than that of pure FePt. This remarkable decrease of the annealing temperature is closely related to the high diffusivities of Fe and Pt associated with the defects caused by movements of B atoms. The maximum coercivity(Hc) for FePt films was found to be ${\~}$13 kOe after annealing at $600^{\circ}C$ for 1hr.

  • PDF

Electrocatalytic activity of the bimetallic Pt-Ru catalysts doped TiO2-hollow sphere nanocomposites (Pt-Ru@TiO2-H 나노구조체촉매의 합성 및 전기화학적 특성평가)

  • Lee, In-Ho;Kwen, Hai-Doo;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.42-50
    • /
    • 2013
  • This paper describes the electrocatalytic activity for the oxidation of small biomolecules on the surface of Pt-Ru nanoparticles supported by $TiO_2$-hollow sphere prepared for use in sensor applications or fuel cells. The $TiO_2$-hollow sphere supports were first prepared by sol-gel reaction of titanium tetraisopropoxide with poly(styrene-co-vinylphenylboronic acid), PSB used as a template. Pt-Ru nanoparticles were then deposited by chemical reduction of the $Pt^{4+}$ and $Ru^{3+}$ ions onto $TiO_2$-hollow sphere ($Pt-Ru@TiO_2-H$). The prepared $Pt-Ru@TiO_2-H$ nanocomposites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and elemental analysis. The electrocatalytic efficiency of Pt-Ru nanoparticles was evaluated via ethanol, methanol, dopamine, ascorbic acid, formalin, and glucose oxidation. The cyclic voltammograms (CV) obtained during the oxidation studies revealed that the $Pt-Ru@TiO_2-H$ nanocomposites showed high electrocatalytic activity for the oxidation of biomolecules. As a result, the prepared Pt-Ru catalysts doped onto $TiO_2$-H sphere nanocomposites supports can be used for non-enzymatic biosensor or fuel cell anode electrode.

Investigation of Domain Structure in (001) PMN-x%PT Crystals by Scanning Force Microscope (Scanning Force Microscope에 의한 (001) PMN-x%PT 단결정의 도메인 구조에 대한 연구)

  • Lee, Eun-Gu;Lee, Jae-Gab
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.300-304
    • /
    • 2009
  • The domain structures of annealed (001)-oriented $Pb(Mg_{1/3}Nb_{2/3})O_3-x%PbTiO_3$ (PMN-x%PT) crystals for x = 10, 20, 30, 35, and 40 at% were investigated by Polarized Optical Microscopy (POM) and Scanning Force Microscopy (SFM) in the piezoresponse mode. Both Polar Nano-Domains (PND) and long strip-like domains were clearly observed. The results also showed how the domain structure changed between phases with an increasing x in the PMN-x%PT crystals and the domain hierarchy on various length scales ranging from 40 nm to 0.1 mm. Distorted pseudo-cubic phase (x < 20%) consisted of PNDs that did not self-assemble into macro-domain plates. The rhombohedral phase (x = 30%) consisted of PNDs that began to self-assemble into colonies along preferred {110} planes. The monoclinic phase (x = 35%) consisted of miniature polar domains on the nm scale, whereas, the tetragonal phase (x = 40%) consisted of {001} oriented lamella domains on the mm scale that had internal nano-scale heterogeneities, which self-assembled into macro-domain plates oriented along {001} the mm scale.

Effect of $PbTiO_3$ Concentration on the Properties of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Relaxor Ferroelectrics ($Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ 계 완화형 강유전체의 특성에 미치는 $PbTiO_3$ 첨가량의 변화 -I.유전특성 및 초전특성-)

  • 박재환;흥국선;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.391-398
    • /
    • 1996
  • In order to understand the electrostrictive behavior of Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT) solid solutions the dielectric constants and the electric-field-induced strains in (1-x)PMN-xPT (x=0.0-0.4) were investigated in the temperature range -5$0^{\circ}C$-20$0^{\circ}C$. Powder of (1-x)Pb(Mg2/3Nb2/3)O3-xPbTiO3 (x=0.0, 0.1, 0.2, 0.3, 0.35, and 0.4) were prepared from the oxide forms of Pb, Mg, Nb and Ti via a columbite precursor method As the amount of PbTiO3 increases the temperature of maximum dielectric constant(T$\varepsilon$max) increases and the phase transition become less diffusive. The strain maximum occurs only when the diffuse phase transition occurs from rhombohedral to cubic or rhombohedral to tetragonal as in x=0.1-0.35 The strains monotonically decrease with temperature in the materials in which phase transition occurs from tetragonal to cubic as in x=0.4.

  • PDF