• Title/Summary/Keyword: $Prot{\acute{e}}g{\acute{e}}$ plug-in

Search Result 4, Processing Time 0.017 seconds

Developing Protégé Plug-in: OWL Ontology Visualization using Social Network

  • Kim, Min-Soo;Kim, Min-Koo
    • Journal of Information Processing Systems
    • /
    • v.4 no.2
    • /
    • pp.61-66
    • /
    • 2008
  • In recent years, numerous studies have been attempted to exploit ontology in the area of ubiquitous computing. Especially, some kinds of ontologies written in OWL are proposed for major issues in ubiquitous computing such like context-awareness. OWL is recommended by W3C as a descriptive language for representing ontology with rich vocabularies. However, developers struggle to design ontology using OWL, because of the complex syntax of OWL. The research for OWL visualization aims to overcome this problem, but most of the existing approaches unfortunately do not provide efficient interface to visualize OWL ontology. Moreover, as the size of ontology grows bigger, each class and relation are difficult to represent on the editing window due to the small size limitation of screen. In this paper, we present OWL visualization scheme that supports class information in detail. This scheme is based on concept of social network, and we implement OWL visualization plug-in on $Prot{\acute{e}}g{\acute{e}}$ that is the most famous ontology editor.

A Building and Application of Enterprise Ontology with $Prot{\acute{e}}g{\acute{e}}$ - Representation and Analysis of Shipbuilding Process - ($Prot{\acute{e}}g{\acute{e}}$를 이용한 기업 온톨로지 기반 구축 및 활용 -조선 건조공정 표현과 분석 -)

  • Park, Ji-Hyun;Yang, Jae-Gun;Bae, Jae-Hak J.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.27-39
    • /
    • 2009
  • This paper describes a case study on an enterprise ontology(30) based analysis and representation of the production operation in shipbuilding. The production operation consists of steel fabrication, assembly, election, launching, sea trial and delivery process. We represent and analyze the steel fabrication process and the piping design business of the assembly process among them. First, we build an ontology on concepts of steel fabrication process and the piping design business of assembly process. And then we merge it with the original EO. We represent each process and analyze current state of production process with the merged EO and $Prot{\acute{e}}g{\acute{e}}$ plug-ins. Moreover, we can analyze dependency relations among the workflow elements. Through the case study, we have found the effectiveness of EO in business management and process management in complex heavy industries.

Product Family Design using Formal Concept Analysis and Ontology (정형적 개념 분석과 온톨로지를 활용한 제품계열 정보 설계)

  • Lee, Hee-Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.3
    • /
    • pp.110-117
    • /
    • 2012
  • A product family design has received much attention over the last several decades, since a product family-based development shortens lead-times and reduces cost, as well as increases efficiency and effectiveness of the product realization process. It is challenging work, however, to define the product family design in the heterogeneous product development environments, due to myriads of products related information described in different ways across products in any companies. In this paper, we provided a way of defining product family design framework using formal concept analysis and ontology language. Based on this, the specific product family can be derived by ontological reasoning, and the new product concept can be also expanded in the framework. The proposed framework is formalized using OWL (Web Ontology Language) and implemented in $Prot{\acute{e}}g{\acute{e}}$. Actual product family design algorithm is carried out using FaCT++ engine, a plug-in to $Prot{\acute{e}}g{\acute{e}}$, and the benefits of the proposed method are also demonstrated through a case study.

An Ontological Approach to Select R&D Evaluation Metrics (온톨로지 기반 연구개발 평가지표 선정기법)

  • Lee, Hee-Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.1
    • /
    • pp.80-90
    • /
    • 2010
  • Performance management is very popular in business area and seems to be an exciting topic. Despite significant research efforts and myriads of performance metrics, performance management today as a rigorous approach is still in an immature state and metrics are often selected based on intuitive and heuristic approach. In a R&D sector, the difficulty to select the proper performance metrics is even more increasing due to the natural characteristics of R&D such as unique or domain-specific problems. In this paper, we present a way of presenting R&D performance framework using ontology language. Based on this, the specific metrics can be derived by reusing or inheriting the context in the framework. The proposed ontological framework is formalized using OWL(Ontology Web Language) and metrics selection rules satisfying the characteristics of R&D are represented in SWRL(Semantic Web Rule Language). Actual metrics selection procedure is carried out using JESS rule engine, a plug-in to Prot$\acute{e}$g$\acute{e}$, and illustrated with an example, incorporating a prevalent R&D performance model : TVP(Technology Value Pyramid).