• Title/Summary/Keyword: $P_{2Y}$ receptor

Search Result 1,283, Processing Time 0.03 seconds

Selectivity of Oxomemazine for the $M_1$ Muscarinic Receptors

  • Lee, Shin-Woong;Woo, Chang-Woo;Kim, Jeung-Gu
    • Archives of Pharmacal Research
    • /
    • v.17 no.6
    • /
    • pp.443-451
    • /
    • 1994
  • The binding characteristics of pirenzepine and oxomemazine to muscarinic receptor were studied to evaluate the selectivity of oxomemazine for the muscarinic receptor subtypes in rat cerebral microsomes. Equililbrium dissociation constant $(K_D){\;}of{\;}(-)[^3H]$quinuclidinyl benzilate$([^3H)QNB)$ determined from saturation isotherms was 64-pM. Analysis of the pirenzepine inghibition curve of [$^3H$]QNB binding to cerebral microsome indicatd the presence of two receptor subtypes with high $(K_1 = 16 nM, M_1 receptor)$two receptor subypes with about 20-fold difference in the affinity for high $(k_1 = 84nM, {\;} O_H receptor){\;} and {\;}low{\;} (K_1{\;} ={\;} 1.65\muM, {\;} O_L receptor$) affinity sites. The percentage populations of $M_1{\;} and M_3$, /TEX> receptors to the total receptors were 61 : 39, and those of $O_H{\;} and{\;} O_L$ receptors 39 : 61, resepectively. Both pirenzepine and oxomemazine increaed the $K_D$ value for $[^3H]QNB$ without affecting the binding site concentrations and Hii coefficient for the $[^3H]QNB$ without affecting the binding site concentractions and Hill coefficient for the [$^{3}$H]QNB binding. Oxomemazine had a 10-fold higher affinity at $M_1$ receptors than at $M_3$ receptors, and pirenzepine a 8-fold higher affinity at $O_H$ receptors were of $O_H$ receptors and 71% of $M_3$ receptors. However, $M_3$for oxomemazine and $O_H$for pirenzepine were composed of a uniform population. These results suggest that oxomemazine could be classified as a selective drug for $M_1$ receptors and also demonstrate that rat cerebral microsomes contain three different subtypes of $M_1{\;} M_3$ and the other site which is different from $M_1, {\;} M_2$, /TEX> receptors.

  • PDF

The activation of α2-adrenergic receptor in the spinal cord lowers sepsis-induced mortality

  • Kim, Sung-Su;Park, Soo-Hyun;Lee, Jae-Ryung;Jung, Jun-Sub;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.495-507
    • /
    • 2017
  • The effect of clonidine administered intrathecally (i.t.) on the mortality and the blood glucose level induced by sepsis was examined in mice. To produce sepsis, the mixture of D-galactosamine (GaLN; 0.6 g/10 ml)/lipopolysaccharide (LPS; $27{\mu}g/27{\mu}l$) was treated intraperitoneally (i.p.). The i.t. pretreatment with clonidine ($5{\mu}g/5{\mu}l$) increased the blood glucose level and attenuated mortality induced by sepsis in a dose-dependent manner. The i.t. post-treatment with clonidine up to 3 h caused an elevation of the blood glucose level and protected sepsis-induced mortality, whereas clonidine post-treated at 6, 9, or 12 h did not affect. The pre-treatment with oral D-glucose for 30 min prior to i.t. post-treatment (6 h) with clonidine did not rescue sepsis-induced mortality. In addition, i.t. pretreatment with pertussis toxin (PTX) reduced clonidine-induced protection against mortality and clonidine-induced hyperglycemia, suggesting that protective effect against sepsis-induced mortality seems to be mediated via activating PTX-sensitive G-proteins in the spinal cord. Moreover, pretreatment with clonidine attenuated the plasma tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$) induced by sepsis. Clonidine administered i.t. or i.p. increased $p-AMPK{\alpha}1$ and $p-AMPK{\alpha}2$, but decreased p-Tyk2 and p-mTOR levels in both control and sepsis groups, suggesting that the up-regulations of $p-AMPK{\alpha}1$ and $p-AMPK{\alpha}2$, or down-regulations of p-mTOR and p-Tyk2 may play critical roles for the protective effect of clonidine against sepsis-induced mortality.

Action of Mitochondrial Substrates on Neuronal Excitability in Rat Substantia Gelatinosa Neurons

  • Lee, Hae In;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.42 no.2
    • /
    • pp.55-61
    • /
    • 2017
  • Recent studies indicate that mitochondria are an important source of reactive oxygen species (ROS) in the spinal dorsal horn. In our previous study, application of malate, a mitochondrial electron transport complex I substrate, induced a membrane depolarization, which was inhibited by pretreatment with ROS scavengers. In the present study, we used patch clamp recording in the substantia geletinosa (SG) neurons of spinal slices, to investigate the cellular mechanism of mitochondrial ROS on neuronal excitability. DNQX (an AMPA receptor antagonist) and AP5 (an NMDA receptor antagonist) decreased the malate-induced depolarization. In an external calcium free solution and addition of tetrodotoxin (TTX) for blockade of synaptic transmission, the malate-induced depolarization remained unchanged. In the presence of DNQX, AP5 and AP3 (a group I metabotropic glutamate receptor (mGluR) antagonist), glutamate depolarized the membrane potential, which was suppressed by PBN. However, oligomycin (a mitochondrial ATP synthase inhibitor) or PPADS (a P2 receptor inhibitor) did not affect the substrates-induced depolarization. These results suggest that mitochondrial substrate-induced ROS in SG neuron directly acts on the postsynaptic neuron, therefore increasing the ion influx via glutamate receptors.

Association of Poor Prognosis Subtypes of Breast Cancer with Estrogen Receptor Alpha Methylation in Iranian Women

  • Izadi, Pantea;Noruzinia, Mehrdad;Fereidooni, Foruzandeh;Nateghi, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4113-4117
    • /
    • 2012
  • Breast cancer is a prevalent heterogeneous malignant disease. Gene expression profiling by DNA microarray can classify breast tumors into five different molecular subtypes: luminal A, luminal B, HER-2, basal and normal-like which have differing prognosis. Recently it has been shown that immunohistochemistry (IHC) markers including estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (Her2), can divide tumors to main subtypes: luminal A (ER+; PR+/-; HER-2-), luminal B (ER+;PR+/-; HER-2+), basal-like (ER-;PR-;HER2-) and Her2+ (ER-; PR-; HER-2+). Some subtypes such as basal-like subtype have been characterized by poor prognosis and reduced overall survival. Due to the importance of the ER signaling pathway in mammary cell proliferation; it appears that epigenetic changes in the $ER{\alpha}$ gene as a central component of this pathway, may contribute to prognostic prediction. Thus this study aimed to clarify the correlation of different IHC-based subtypes of breast tumors with $ER{\alpha}$ methylation in Iranian breast cancer patients. For this purpose one hundred fresh breast tumors obtained by surgical resection underwent DNA extraction for assessment of their ER methylation status by methylation specific PCR (MSP). These tumors were classified into main subtypes according to IHC markers and data were collected on pathological features of the patients. $ER{\alpha}$ methylation was found in 25 of 28 (89.3%) basal tumors, 21 of 24 (87.5%) Her2+ tumors, 18 of 34 (52.9%) luminal A tumors and 7 of 14 (50%) luminal B tumors. A strong correlation was found between $ER{\alpha}$ methylation and poor prognosis tumor subtypes (basal and Her2+) in patients (P<0.001). Our findings show that $ER{\alpha}$ methylation is correlated with poor prognosis subtypes of breast tumors in Iranian patients and may play an important role in pathogenesis of the more aggressive breast tumors.

Treatment outcome in patients with triple negative early stage breast cancers compared with other molecular subtypes

  • Kim, Ja Young;Chang, Sei-Kyung;Park, Heily;Lee, Bo-Mi;Shin, Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.30 no.3
    • /
    • pp.124-131
    • /
    • 2012
  • Purpose: To determine whether triple negative (TN) early stage breast cancers have poorer survival rates compared with other molecular types. Materials and Methods: Between August 2000 and July 2006, patients diagnosed with stage I, II early stage breast cancers, in whom all three markers (estrogen receptor, progesterone receptor, and human epidermal growth factor receptor [HER]-2) were available and treated with modified radical mastectomy or breast conserving surgery followed by radiotherapy, were retrospectively reviewed. Results: Of 446 patients, 94 (21.1%) were classified as TN, 57 (12.8%) as HER-2 type, and 295 (66.1%) as luminal. TN was more frequently associated with young patients younger than 35 years old (p = 0.002), higher histologic grade (p < 0.0001), and nuclear (p < 0.0001). The median follow-up period was 78 months (range, 4 to 130 months). There were 9 local relapses (2.0%), 15 nodal (3.4%), 40 distant metastases (9.0%), and 33 deaths (7.4%) for all patients. The rates of 5-year OS, DFS, LFS, and DMFS for all patients were 95.5%, 89.9%, 95.4%, and 91.7%, respectively. There were no significant differences in OS, DFS, LFS, and DMFS between triple negative and other subtypes (p > 0.05). Conclusion: We found that patients with TN early stage breast cancers had no difference in survival rates compared with other molecular subtypes. Prospective study in homogeneous treatment group will need for a prognosis of TN early stage breast cancer.

The Effect of Antihistamine on Endotoxin-induced Acute Lung Injury (내독소 유도 급성폐손상에서 항히스타민의 역할)

  • Jung, Bock-Hyun;Koh, Youn-Suck;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.3
    • /
    • pp.219-229
    • /
    • 2002
  • Background : Sepsis-induced acute lung injury (ALI) is caused by many cellular and humoral mediators induced by an endotoxin. Histamine, which is widely distributed in the lungs and has been considered as an important mediator of sepsis. It increases P-selectin expression on the endothelial cell surfaces and induces IL-8 secretion. Therefore, an endotoxin-induced histamine may be related to neutrophil-mediated ALI by inducing the migration and activation of neutrophils in the lung tissue. However, the role of endogenous histamine in endotoxin ALI has not been clarified. The purpose of this study was to investigate how endotoxin-induced ALI is influenced by endogenous histamine and to identify the possible mechanism of action. Materials and Methods : The study consisted of 4 groups using Sprague-Dawley rats : 1) control group, where the rats were infused intratracheally by normal saline, 2) an endotoxin group, where lipopolysaccharide (LPS) was administered intratracheally 3) the $H_2$ receptor antagonist-treated group ($H_2$ group) and 4) the $H_1$ receptor antagonist-treated group ($H_1$ group), where $H_2$-receptor blocker (ranitidine) and $H_1$-receptor blocker(pyrilamine) were co-treated intravenously with the intratracheal administration of an endotoxin. The lung leak index using $I^{125}$-BSA, the total protein and LDH concentration in the lung lavage fluid, myeloperoxidase(MPO) activity in the lung tissue, the pathologic score and the total number of neutrophils, TNF-$\alpha$, IL-$1{\beta}$ and IL-10 in lung lavage (BAL) fluid were measured in each group as the indices of lung injury. Results : Compared to the control group, the endotoxin group exhibited significant increases in all lung injury indices. Significant reductions in the endotoxin-mediated increases in lung leak index (p<0.05) were observed in both the $H_1$ and $H_2$ groups. In addition the total protein (p<0.05) and LDH concentration (p<0.05) in the BAL fluid were also lower in the $H_2$ group compared to the endotoxin group. However, there was no change in the MPO activity in the lung tissue, the pathologic score and the total number of neutrophils in the BAL fluid in both the $H_2$ and $H_1$ groups compared to the endotoxin group. The increases in TNF-$\alpha$ IL-$1{\beta}$ and IL-10 concentrations in the BAL fluid observed in the endotoxin group were not reduced in the $H_2$ and $H_1$ groups. Conclusion : Antihistamine attenuated the enhanced alveolar-capillary permeability induced by the endotoxin via the $H_2$ receptor. However the attenuating mechanism may not be related to the pathogenesis of neutrophil dependent lung injury.

Purinergic-mediated Calcium Homeostasis and Dopamine R~lease in PC 12 Cells: Effect of Ethanol

  • Kim, Won-Ki
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.16-16
    • /
    • 1997
  • Extracelluar ATP evokes many biological processes, including neuronal excitation and neurotransmitter secretion, through activation of purinergic P2 receptors. Although excitatory and inhibitory receptor-operated channels (ROC) and voltage-dependent calcium channels (VDCC) have been reported to be altered by acute and chronic exposure to ethanol, little is known of the ethanol effects on purinergic receptor-operated channels in neuronal cells.(omitted)

  • PDF

Scorpion Venom Activates Both $Ca^{2+}-ATPase$ and Inositol 1,4,5-trisphosphate Receptor in the Microsomes of Tracheal Epithelial Cells (전갈독소에 의한 호흡기 상피세포 마이크로솜 $Ca^{2+}-ATPase$와 Inositol 1,4,5-trisphosphate 수용체의 활성촉진)

  • Cho, Kyong-Soo;Park, Kyoung-Sun;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.189-194
    • /
    • 1996
  • The effects of scorpion (Leiurus quinquestriatus hebraeus, Lqh) venom were evaluated on the activities of microsomal $Ca^{2+}-ATPase$ and $Ca^{2+}$ release channel prepared from the epithelial cells of pig airway. Whole venom of Lqh $(120\;{\mu}g/ml)$ increased the activity of microsomal $Ca^{2+}-ATPase$ about 32% in the tight-sealed microsomes and about 28% in the Triton X-100-treated or $Ca^{2+}$ ionophore A23187-treated leaky microsomes. Thapsigargin, a specific antagonist of $Ca^{2+}-ATPase$, inhibited 42% of total ATPase activity and also completely blocked the effects of Lqh venom, suggesting that Lqh venom directly activiates the microsomal $Ca^{2+}-ATPase$. In order to determine if Lqh venom increases the microsomal uptake of $^{45}Ca^{2+}$, Lqh venom was added in the uptake medium. The Lqh venom increased microsomal $^{45}Ca^{2+}$ uptake up to ${\sim}20%$ and the increase was only observed when heparin, an antagonist of $InsP_3$ receptor channel, was added in the uptake medium. Lqh venom in the absence of heparin unexpectedly decreased the rate and the amount of $^{45}Ca^{2+}$ uptake. These results were explained by simultaneous increases in $^{45}Ca^{2+}$ release as well as $^{45}Ca^{2+}$ uptake by Lqh venom. Lqh venom itself increased the release of $^{45}Ca^{2+}$ as much as $^{45}Ca^{2+}$ release by $4\;{\mu}m\;InsP_3$, implying that Lqh venom also activates $InsP_3$ receptor, microsomal $Ca^{2+}$ release channel. Based on these results, we suggest that the Lqh venom consists of at least two components; one activates the $InsP_3$ receptor and the other avates the $Ca^{2+}-ATPase$. Currently we a investigating the chemical and electrophysiological properties of the active components of Lqh venom.

  • PDF

The Effects of Glutamate NMDA Receptor Antagonist MK-801 on Gastrointestinal Motility after Middle Cerebral Artery Occlusion in Rats

  • Ameer, Nasir Hussin;Lee, Jae-Hee;Choi, Myoung-Ae;Jin, Guang-Shi;Kim, Min-Sun;Park, Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.151-156
    • /
    • 2010
  • This study was performed to investigate the role of glutamate neurotransmitter system on gastrointestinal motility in a middle cerebral artery occlusion (MCAO) model of rats. The right middle cerebral artery was occluded by surgical operation, and intestinal transit and geometric center as a parameter of gastrointestinal motility and expression of c-Fos protein in the insular cortex and cingulate cortex were measured at 2 and 12 h after MCAO. Intestinal transit was $66.3{\pm}7.5%$ and $62.3{\pm}5.7%$ 2 and 12 h after sham operation, respectively, and MCAO significantly decreased intestinal transit to $39.0{\pm}3.5%$ and $47.0{\pm}5.1%$ at 2 and 12 h after the occlusion, respectively (p<0.01). The geometric center was $5.6{\pm}0.4$ and $5.2{\pm}0.9$ at 2 and 12 h after sham operation, respectively, and MCAO significantly decreased geometric center to $2.9{\pm}0.8$ and $3.0{\pm}0.3$ at 2 and 12 h after the occlusion, respectively (p<0.01). In control animals, injection of atropine decreased intestinal transit to $35.9{\pm}5.2%$, and injection of glutamate NMDA receptor antagonist, MK-801, decreased intestinal transit to $28.8{\pm}9.5%$. Pretreatment with MK-801, a glutamate NMDA receptor antagonist, in the MCAO group decreased intestinal transit to $11.8{\pm}3.2%$, which was significantly decreased compared to MCAO group (p<0.01). MCAO markedly increased the expression of c-Fos protein in the insular cortex and cingulate cortex ipsilateral to the occlusion 2 h after MCAO, and pretreatment with MK-801 produced marked reduction of c-Fos protein expression compared to MCAO group (p<0.01). These results suggest that modulation of gastrointestinal motility after MCAO might be partially mediated through a glutamate NMDA receptor system.