• Title/Summary/Keyword: $PM_{10}$ concentrations

Search Result 2,173, Processing Time 0.03 seconds

Compensation of Light Scattering Method for Real-Time Monitoring of Particulate Matters in Subway Stations (지하역사 내 미세먼지 실시간 모니터링을 위한 광산란법 보정)

  • Kim, Seo-Jin;Kang, Ho-Seong;Son, Youn-Suk;Yoon, Sang-Lyeor;Kim, Jo-Chun;Kim, Gyu-Sik;Kim, In-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.533-542
    • /
    • 2010
  • The $PM_{10}$ concentrations in the underground should be monitored for the health of commuters on the underground subway system. Seoul Metro and Seoul Metropolitan Rapid Transit Corporation are measuring several air pollutants regularly. As for the measurement of $PM_{10}$ concentrations, instruments based on $\beta$-ray absorption method and gravimetric methods are being used. But the instruments using gravimetric method give us 20-hour-average data and the $\beta$-ray instruments can measure the $PM_{10}$ concentration every one hour. In order to keep the $PM_{10}$ concentrations under a healthy condition, the air quality of the underground platform and tunnels should be monitored and controlled continuously. The $PM_{10}$ instruments using light scattering method can measure the $PM_{10}$ concentrations every less than one minute. However, the reliability of the instruments using light scattering method is still not proved. The purpose of this work is to study the reliability of the instruments using light scattering method to measure the $PM_{10}$ concentrations continuously in the underground platforms. One instrument using $\beta$-ray absorption method and two different instruments using light scattering method (LSM1, LSM2) were placed at the platform of the Jegi station of Seoul metro line Number 1 for 10 days. The correlation between the $\beta$-ray instrument and the LSM2 ($r^2$=0.732) was higher than that between the $\beta$-ray instrument and the LSM1 ($r^2$=0.393). Thus the LSM2 was chosen for further analysis. Three different regression analysis methods were tested: Linear regression analysis, Nonlinear regression analysis and Orthogonal regression analysis. When the instruments using light scattering method were used, the data measured these instruments have to be converted to actual $PM_{10}$ concentrations using some factors. With these analyses, the factors could be calculated successfully as linear and nonlinear forms with respect to the data. And the orthogonal regression analysis was performed better than the ordinary least squares method by 28.45% reduction of RMSE. These findings propose that the instruments using light scattering method light scattering method can be used to measure and control the $PM_{10}$ concentrations of the underground subway stations.

Studies on the Concentrations of Sex Hormone in the Blood Plasma and Antrum Fluid of Follicular and Lutein Cystic Ovaries of Holstein Cows (난포낭종 및 황체난종우의 혈장과 낭종내강액내 성호르몬의 농도에 관한 연구)

  • 김상근;임영재
    • Korean Journal of Animal Reproduction
    • /
    • v.13 no.2
    • /
    • pp.85-92
    • /
    • 1989
  • The study was carried out to find out the changes of the sex hormone concentrations in the blood plasma and antrum of follicular and lutein cystic ovaries of Holstein cows. The progesterone, estradiol-17$\beta$, testosterone, FSH and LH from samples of the blood plasma and antrum of cystic ovaries of cows assayed by radioimmunoassay method. The results of this study were summarized as follows : 1. The concentrations fo progesterone and estradiol-17$\beta$ in the blood plasmaat estrous and luteal phase were 0.95$\pm$0.18ng/ml, 11.45$\pm$3.12pg/ml and 4.25$\pm$0.27ng/ml, 6.27$\pm$0.82pg/ml respectively. The concentrations of progesterone and estradiol-17$\beta$ in the antrum fluid of follicles at estrous and luteal phase were 24.8$\pm$4.12ng/ml, 54.3$\pm$7.25pg/ml and 21.7$\pm$3.79ng/ml, 14.3$\pm$2.72pg/ml respectively, and showed significant changes among the estrous and luteal phase and blood plasma and antrum fluid of follicles. 2. The concentrations of progesterone, estradiol-17$\beta$, testosterone and LH in the blood plasma of follicular cystic ovareis of cows were 0.85$\pm$0.25ng/ml, 9.23$\pm$2.72pg/ml, 17.12$\pm$3.26pg/ml and 3.78$\pm$1.02mIU/ml respectively. And the concentrations of progesterone, estradiol-17$\beta$, testosterone and LH in the antrum fluid of follicular cystic ovareis of cows were 284$\pm$48.21ng/ml, 389$\pm$67.23ng/ml, 12.84$\pm$0.29ng/ml and 1.84$\pm$0.17mIU/ml respectively, and showed significant changes between in the blood plasma and antrum fluid of cystic ovaries. 3. The concentrations of progesterone, estradiol-17$\beta$, testosterone and LH in the blood plasma of lutein cystic ovaries of cows were 3.40$\pm$0.78ng/ml, 4.02$\pm$0.42pg/ml, 10.72$\pm$2.74pg/ml and 0.76$\pm$0.12mIU/ml respectively. And the concentrations of progesterone, estradiol-17$\beta$, testosterone and LH in the antrum fluid of lutein cystic ovareis of cows were 427$\pm$35.79ng/ml, 0.76$\pm$0.07ng/ml, 3.45$\pm$0.57ng/ml and 0.29$\pm$0.07mIU/ml respectively, and showed significant changes between the blood plasma and antrum fluid of cystic ovaries. 4. Accordingly, the diagnosis of follicular and lutein cystic ovareis of cows from progesterone, estradiol-17$\beta$ and LH levels in the blood plasma and antrum of cystic ovaries of cows is thought to be possible a diagnostic means.

  • PDF

Vulnerability Assessment for Fine Particulate Matter (PM2.5) in the Schools of the Seoul Metropolitan Area, Korea: Part I - Predicting Daily PM2.5 Concentrations (인공지능을 이용한 수도권 학교 미세먼지 취약성 평가: Part I - 미세먼지 예측 모델링)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1881-1890
    • /
    • 2021
  • Particulate matter (PM) affects the human, ecosystems, and weather. Motorized vehicles and combustion generate fine particulate matter (PM2.5), which can contain toxic substances and, therefore, requires systematic management. Consequently, it is important to monitor and predict PM2.5 concentrations, especially in large cities with dense populations and infrastructures. This study aimed to predict PM2.5 concentrations in large cities using meteorological and chemical variables as well as satellite-based aerosol optical depth. For PM2.5 concentrations prediction, a random forest (RF) model showing excellent performance in PM concentrations prediction among machine learning models was selected. Based on the performance indicators R2, RMSE, MAE, and MAPE with training accuracies of 0.97, 3.09, 2.18, and 13.31 and testing accuracies of 0.82, 6.03, 4.36, and 25.79 for R2, RMSE, MAE, and MAPE, respectively. The variables used in this study showed high correlation to PM2.5 concentrations. Therefore, we conclude that these variables can be used in a random forest model to generate reliable PM2.5 concentrations predictions, which can then be used to assess the vulnerability of schools to PM2.5.

An Analysis of Aerosol Mass Concentrations and Elemental Constituents Measured at Cheongwon depending on the Backward Trajectories of Air Parcel in East Asia in 2011 (2011년 동아시아에서 기류의 이동 경로에 따른 청원에서 측정한 에어로졸 질량 농도 및 원소 성분 분석)

  • Kim, Hak-Sung;Byun, Kwang-Tae;Chung, Yong-Seung;Choi, Hyun-Jung;Kim, Min-Jung
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.855-863
    • /
    • 2012
  • This study analyzed mass concentrations of TSP, PM10 and PM2.5 and elemental constituents according to the isentropic backward trajectories of air parcel from Cheongwonin East Asia during the period January - October, 2011. Mass concentrations of the continental polluted airflow (CP) showed levels of TSP and PM10 mass concentrations higher than the continental background airflow (CB). Also, PM2.5 mass concentrations of anthropogenic fine particles ran higher in CP than in CB. The elemental constituents and elemental constituent ratio ended up varying depending on the origin of atmospheric aerosols generated. The average absolute content of elemental constituents reached its height in CB, the ratio of anthropogenically originating elements (PE) among the all elements (AE) analyzed marked a high in CP, and Mg+Na/AE reached its height in the oceanic airflow (OA). At the same time, TSP, PM10 and PM2.5 mass concentrations, the ratio of PM2.5/TSP and PE/AE element ratio ran higher in CP than CB. Episodes of large-scale transport of atmospheric pollutants as observed at Cheongwon were 8 cases and 22 days. The ratios of PM10, PM2.5 among TSP mass concentrations showed different results and the ratios of PM2.5 showed an increasing trend in the episodes of anthropogenic air pollution transport. Overall, dustfall episodes show a level of elemental constituents higher than those of anthropogenic air pollution.Dustfall episodes were observed to contain more of Fe, Al and Ca originating from continental soils and those of air pollution were observed to contain more of Zn, Mn, Cu and Pb. By difference in contents of absolute elemental constituents, episodes of anthropogenic air pollution showed a high PE/AE rate, and dustfall episodes a high SE/AE rate.

Analysis of Meteorological Characteristics related to Changes in Atmospheric Environment on Jeju Island during 2010-2012 (최근(2010~2012년) 제주지역 대기환경 변화에 관한 기상특성 분석)

  • Song, Sang-Keun;Han, Seung-Bum;Kim, Suk-Woo
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1889-1907
    • /
    • 2014
  • The characteristics of meteorological conditions related to changes in atmospheric environment on Jeju Island were investigated during recent years (2010-2012). This analysis was performed using the hourly observed data of meteorological variables (air temperature, wind speed and direction) and air pollutants ($O_3$, $PM_{10}$, $SO_2$, $NO_2$, and CO). Out of 5 pollutants, $O_3$ and $PM_{10}$ concentrations have frequently exceeded national environmental standards in the study area during the study period, with relatively higher concentrations than the others. The concentrations of $O_3$ and $PM_{10}$ in 2010 and 2011 were somewhat higher than those in 2012, and their highest concentrations were mostly observed in spring followed by fall. Nighttime $O_3$ concentrations (with relatively high concentration levels) were almost similar to its daytime concentrations, due to less $O_3$ titration by very low NO concentrations in the target area and in part to $O_3$ increase resulting from atmospheric transport processes. The transport effect related to the concentration variations of $O_3$ and $PM_{10}$ was also clarified in correlation between these pollutants and meteorological variables, e.g. the high exceedance frequency of concentration criteria with strong wind speed and the high concentrations with the westerly/northwesterly winds (e.g., transport from the polluted regions of China). The overall results of this study suggest that the changes in atmospheric environment in the study area were likely to be caused by the transport effect (horizontal and vertical) due to the meteorological conditions rather than the contribution of local emission sources.

Endocrine Profiles of Oestrous Cycle in Buffalo: A Meta-analysis

  • Mondal, S.;Suresh, K.P.;Nandi, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.2
    • /
    • pp.169-174
    • /
    • 2010
  • A meta-analysis was conducted to summarize the results of studies which have described the profiles of hormones during the oestrous cycle in buffalo using a fixed effect model and a random effect model. Plasma progesterone concentrations were lowest (0.30${\pm}$0.06 ng/ml) during the peri-oestrous phase and increased (p = 0.067) through the early luteal phase to a maximum concentration (1.94${\pm}$0.03 ng/ml) during the mid-luteal phase. Circulating plasma inhibin and estradiol concentrations were lowest (0.31${\pm}$0.01 and 11.04${\pm}$0.13 ng/ml) during the mid-luteal phase, increased through the late luteal phase to maximum concentrations (0.44${\pm}$0.02 and 22.48${\pm}$0.32 ng/ml) during the peri-oestrous phase. Plasma FSH concentrations were lowest during the early luteal phase and increased through the mid-luteal phase to a maximum concentration during the peri-oestrous phase. Peripheral prolactin concentrations were lowest during the late luteal phase and increased to a maximum concentration during the peri-oestrous phase which then declined (p = 0.716) during the early luteal phase. Peripheral plasma cortisol concentrations decreased from 2.68${\pm}$0.14 ng/ml during the early luteal phase to 1.43${\pm}$0.27 ng/ml during the mid-luteal phase (p<0.001) which then increased to 2.06${\pm}$0.17 ng/ml during the late luteal phase. Plasma $T_{5}$ concentrations decreased from the late luteal phase to the peri-oestrous phase (p<0.001) which then increased during the early luteal phase. $T_{4}$ concentrations increased from the late luteal phase to the peri-oestrous phase which then decreased during the early luteal phase.

Plasma Protein Profile of Neonatal Buffalo Calves in Relation to the Protein Profile of Colostrum/Milk during First Week Following Parturition

  • Lone, Abdul Gani;Singh, Charanbir;Singha, S.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.348-352
    • /
    • 2003
  • An investigation was made into the protein profile of colostrum/milk of ten Murrah buffaloes and of their ten buffalo calves during their first week of neonatal life to study the materno-neonatal transfer of immunoglobulins (Ig). Calves were pail fed 3.5 liter of colostrum and/or milk per calf/day exclusively from their dam. First blood sample from newborn calves was collected before colostrum feeding on the day of birth (day zero) and the sampling continued daily for seven days after colostrum/milk feeding. Colostrum/milk Ig and IgG values were $4.82{\pm}2.60$, $2.19{\pm}1.90$, $1.12{\pm}0.82$, $0.69{\pm}0.44$, $0.59{\pm}0.31$, $0.47{\pm}0.20$, $0.40{\pm}0.22$, $0.40{\pm}0.25$ and $3.58{\pm}1.90$, $1.08{\pm}0.92$, $0.52{\pm}0.40$, $0.31{\pm}0.20$, $0.27{\pm}0.14$, $0.22{\pm}0.08$, $0.18{\pm}0.09$, $0.14{\pm}0.08$ respectively during 0-7 days post partum. The concentration of total colostrum/milk proteins, Ig, IgG and albumin were highest within 12 h post-partum. Thereafter, the concentrations followed a declining trend which may be attributed to the reduced transfer of proteins from the maternal blood, declining synthesis by the mammary glands and/or depletion of stored proteins. The concentrations of plasma Ig and IgG before colostrum feeding on day zero were $0.42{\pm}0.09$ and $0.08{\pm}0.03$ respectively. The levels of plasma Ig were $1.90{\pm}0.37$, $1.80{\pm}0.31$, $1.80{\pm}0.26$, $1.81{\pm}0.28$, $1.78{\pm}0.31$, $1.79{\pm}0.21$, $1.80{\pm}0.32$ and of IgG were $1.57{\pm}0.41$, $1.30{\pm}0.29$, $1.31{\pm}0.21$, $1.27{\pm}0.18$, $1.23{\pm}0.21$, $1.23{\pm}0.16$, $1.26{\pm}0.21$ on days 1-7 after birth after colostrum/milk feeding. The concentrations of total plasma proteins, Ig, IgG were lowest before colostrum feeding and increased significantly (p<0.05) after colostrum feeding in buffalo neonates. The results suggest that the highest amounts of colostral Ig and IgG were available on the day of parturition and thus the calves should receive colostrum as early after birth as possible. Colostrum Ig and IgG concentrations were not correlated to plasma Ig and IgG concentrations in the post-suckle buffalo calves and therefore, colostrum Ig and IgG concentrations were probably not the principle determinants of calf post-suckle plasma Ig and IgG concentrations.

The Metallic Elements of PM10 and PM2.5 in Western Region of Busan in the Springtime of 2005 (2005년 봄철 부산 서부지역 PM10, PM2.5의 금속성분 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.5
    • /
    • pp.327-340
    • /
    • 2007
  • The $PM_{10}$ and $PM_{2.5}$ aerosols were collected at Busan from March to May, 2005, and the concentrations of some metallic elements were analysed to study their characteristics. The mean concentration of $PM_{10}$ was $66.5{\pm}23.0{\mu}g/m^3$ with a range of 22.2 to $118.1{\mu}g/m^3$. The mean concentration of $PM_{2.5}$ was $46.1{\pm}17.2{\mu}g/m^3$ with a range of 9.7 to $83.3{\mu}g/m^3$. The ratio of $PM_{2.5}/PM_{10}$ was 0.69 at Busan. The distribution of metallic elements for $PM_{10}$ and $PM_{2.5}$ were Cd${\ldots}$ ${\ldots}$ $PM_{10}$ were $94.9{\mu}g/m^3$ and $63.7{\mu}g/m^3$, respectively. And The mean mass concentrations of Asian dust and non Asian dust in $PM_{2.5}$ were $56.9{\mu}g/m^3$ and $45.1{\mu}g/m^3$, respectively. The mean values of crustal enrichment factors for five elements (Cd, Cu, Pb, V and Zn) were all higher than 10, possibly suggesting the influence of anthropogenic sources. The soil contribution ratios for $PM_{10}$ and $PM_{2.5}$ were 20.5% and 19.4, respectively.

A Case Study on Distribution Characteristics of Indoor and Outdoor Particulate Matter (PM10, PM2.5) and Black Carbon (BC) by Season and Time of the Day in Apartments (아파트 실내·외 미세먼지(PM10, PM2.5)와 블랙카본(Black Carbon)의 계절별 농도 및 시간대별 분포 특성 사례연구)

  • Park, Shinyoung;Yoon, Danki;Kong, Hyegwan;Kang, Sanghyeon;Lee, Cheolmin
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.4
    • /
    • pp.339-355
    • /
    • 2021
  • Background: Particulate matter (PM10, PM2.5) and black carbon contribute to poor air quality in urban areas, and can also affect indoor environments. Exposure to PM can be associated with respiratory and lung diseases. Objectives: This study investigated the indoor and outdoor concentration distribution patterns of PM10, PM2.5, and black carbon at an apartment building, a typical residential space in the metropolitan areas of South Korea, by season, day of the week (weekday vs. weekend), and time of the day. It aims to obtain foundational data for the effective management of pollutants and investigate the difference in pollution levels between indoor and outdoor environments. Methods: Indoor and outdoor concentrations of PM and black carbon were measured at an apartment building located in Namyangju, Gyeonggi-do Province, using dust sensors and an Aethalometer AE51 (AethLabs, San Francisco, CA, USA) over the course of a year from June 2020 to May 2021. The concentration distribution patterns were analyzed by season and time of day. Results: PM10 and PM2.5 concentrations in the outdoor environment were higher than those in the indoor environment, regardless of the season. By contrast, the indoor black carbon concentration was higher than that in the outdoor environment during summer and autumn. The concentrations of PM10, PM2.5 and black carbon were found to be higher on weekdays than during weekends, especially during rush hour, with concentrations of 25.92~56.58 ㎍/m3, 21.12~44.82 ㎍/m3, 0.63~3.40 ㎍/m3. Conclusions: The outdoor concentrations of PM10, PM2.5, and black carbon were higher during the weekdays, especially during rush hour, than during weekends. This study is expected to provide basic data for the health management of apartment occupants because it is measured over a period of more than one year.

Measurement of PM2.5 Concentrations and Comparison of Affecting Factors in Residential Houses in Summer and Autumn (여름과 가을의 주택실내 초미세먼지(PM2.5) 농도 측정 및 영향요인 비교)

  • Dongjun Kim;Gihong Min;Jihun Shin;Youngtae Choe;Kilyoong Choi;Sang Hyo Sim;Wonho Yang
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.1
    • /
    • pp.16-24
    • /
    • 2024
  • Background: Indoor PM2.5 concentrations in residential houses can be affected by various factors depending on the season. This is because not only do the climate characteristics depend on the season, but the activity patterns of occupants are also different. Objectives: The purpose of this study is to compare factors affecting indoor PM2.5 concentrations in apartments and detached houses in Daegu according to seasonal changes. Methods: This study included 20 households in Daegu, South Korea. The study was conducted during the summer (from July 10 to August 10, 2023) and the autumn (from September 11 to October 9, 2023). A sensor-based instrument for PM2.5 levels was installed in the living room of each residence, and measurements were taken continuously for 24 hours at intervals of one minute during the measurement period. Based on the air quality monitoring system data in Daegu, outdoor PM2.5 concentrations were estimated using ordinary kriging (OK) in Python. In addition, the indoor activities of the occupants were investigated using a time-activity pattern diary. The affecting factors of indoor PM2.5 concentration were analyzed using multiple regression analysis. Results: Indoor and outdoor PM2.5 concentrations of the residences during summer were 15.27±11.09 ㎍/m3 and 11.52±7.56 ㎍/m3, respectively. Indoor and outdoor PM2.5 concentrations during autumn were 13.82±9.61 ㎍/m3 and 9.57±5.50 ㎍/m3, respectively. The PM2.5 concentrations were higher in summer compared to autumn both indoors and outdoors. The primary factor affecting indoor PM2.5 concentration in summer was occupant activity. On the other hand, during the autumn season, the primary affecting factor was outdoor PM2.5 concentration. Conclusions: Indoor PM2.5 concentration in residential houses is affected by occupant activity such as the inflow of outdoor PM2.5 concentration, cooking, and cleaning, as found in previous studies. However, it was revealed that there were differences depending on the season.