• Title/Summary/Keyword: $PGE_{2}$

Search Result 1,085, Processing Time 0.03 seconds

Anti-Oral Microbial Activity and Anti-Inflammatory Effects of Rosmarinic Acid in Lipopolysaccharide-Stimulated MC3T3-E1 Osteoblastic Cells on a Titanium Surface

  • Jeong, Moon-Jin;Lim, Do-Seon;Heo, Kyungwon;Jeong, Soon-Jeong
    • Journal of dental hygiene science
    • /
    • v.20 no.4
    • /
    • pp.221-229
    • /
    • 2020
  • Background: The purpose of this study was to investigate the anti-oral microbial activity and anti-inflammatory effects of rosmarinic acid (RA) in lipopolysaccharide (LPS)-stimulated MC3T3-E1 osteoblastic cells on a titanium (Ti) surface during osseointegration, and to confirm the possibility of using RA as a safe natural substance for the control of peri-implantitis (PI) in Ti-based dental implants. Methods: A disk diffusion test was conducted to confirm the antimicrobial activity of RA against oral microorganisms. In order to confirm the anti-inflammatory effects of RA, inflammatory conditions were induced with 100 ng/ml of LPS in MC3T3-E1 osteoblastic cells on the Ti surface treated with or without 14 ㎍/ml of RA. The production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated MC3T3-E1 osteoblastic cells on the Ti surface was confirmed using an NO assay kit and PGE2 enzyme-linked immunosorbent assay kit. Reverse transcription polymerase chain reaction and western blot analysis were performed to confirm the expression of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in total RNA and protein. Results: RA showed weak antimicrobial effects against Streptococcus mutans and Escherichia coli, but no antimicrobial activity against the bacteria Aggregatibacter actinomycetemcomitans and the fungus Candida albicans. RA reduced the production of pro-inflammatory mediators, NO and PGE2, and proinflammatory cytokines, TNF-α and IL-1β, in LPS-stimulated MC3T3-E1 osteoblastic cells on the Ti surface at the protein and mRNA levels. Conclusion: RA not only has anti-oral microbial activity, but also anti-inflammatory effects in LPS-stimulated MC3T3-E1 osteoblasts on the Ti surface, therefore, it can be used as a safe functional substance derived from plants for the prevention and control of PI for successful Ti-based implants.

Antioxidant and Anti-inflammatory Effects of Ficus erecta var. sieboldii Leaf Extract in Murine Macrophage RAW 264.7 Cells (좁은잎천선과나무(Ficus erecta var. sieboldii) 잎 추출물이 대식세포 RAW 264.7 세포에서 미치는 항산화 및 항염증 효과)

  • Jung, Yong-Hwan;Ham, Young-Min;Yoon, Seon-A;Oh, Dae-Ju;Kim, Chang-Suk;Yoon, Weon-Jong
    • Korean Journal of Plant Resources
    • /
    • v.31 no.4
    • /
    • pp.303-311
    • /
    • 2018
  • In this study, a preliminary evaluation of the antioxidant and anti-inflammatory activity of the Ficus erecta var. sieboldii (Miq.) King (FES) leaf extract has been performed to assess its potential as a natural resource for food and medicinal materials. FES was extracted using 70% EtOH and then fractionated sequentially using n-hexane, $CH_2Cl_2$, EtOAc, and n-BuOH. To screen for antioxidant and anti-inflammatory agents effectively, the inhibitory effect of the FES extracts on the production of oxidant stresses (DPPH, xanthine oxidase, and superoxide) and pro-inflammatory factors (NO, iNOS, COX-2, $PGE_2$, IL-6, and $IL-1{\beta}$) in the murine macrophage cell line RAW 264.7 activated with lipopolysaccharide (LPS) was examined. Among the sequential solvent fractions of FES, the $CH_2Cl_2$ and EtOAc fractions showed decreased production of oxidant stresses (DPPH, xanthine oxidase and superoxide), and the hexane and $CH_2Cl_2$ fractions of FES inhibited the production of pro-inflammatory factors (NO, iNOS, COX-2, and $PGE_2$). The $CH_2Cl_2$ fraction also inhibited the production of pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6, and $IL-1{\beta}$). These results suggest that FES has a significant effects on the production of oxidant stresses and pro-inflammatory factors and may be used a natural resource for antioxidant and anti-inflammatory agents.

JAK/STAT Pathway Modulates on Porphyromonas gingivalis Lipopolysaccharide- and Nicotine-Induced Inflammation in Osteoblasts (조골세포에서 Porphyromonas gingivalis Lipopolysaccharide와 니코틴에 의한 염증에 대한 JAK/STAT Pathway의 역할)

  • Han, Yang-keum;Lee, In Soo;Lee, Sang-im
    • Journal of dental hygiene science
    • /
    • v.17 no.1
    • /
    • pp.81-86
    • /
    • 2017
  • Bacterial infection and smoking are an important risk factors involved in the development and progression of periodontitis. However, the signaling mechanism underlying the host immune response is not fully understood in periodontal lesions. In this study, we determined the expression of janus kinase (JAK)/signal transducer and activator of transcription (STAT) on Porphyromonas gingivalis lipopolysaccharide (LPS)- and nicotine-induced cytotoxicity and the production of inflammatory mediators, using osteoblasts. The cells were cultured with 5 mM nicotine in the presence of $1{\mu}g/ml$ LPS. Cell viability was determined using MTT assay. The role of JAK on inflammatory mediator expression and production, and the regulatory mechanisms involved were assessed via enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and Western blot analysis. LPS- and nicotine synergistically induced the production of cyclooxgenase-2 (COX-2) and prostaglandin $E_2$ ($PGE_2$) and increased the protein expression of JAK/STAT. Treatment with an JAK inhibitor blocked the production of COX-2 and $PGE_2$ as well as the expression of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$, interleukin-$1{\beta}$ ($IL-1{\beta}$), and IL-6 in LPS- and nicotine-stimulated osteoblasts. These results suggest that JAK/STAT is closely related to the LPS- and nicotine-induced inflammatory effects and is likely to regulate the immune response in periodontal disease associated with dental plaque and smoking.

5β-Hydroxypalisadin B isolated from red alga Laurencia snackeyi attenuates inflammatory response in lipopolysaccharide-stimulated RAW 264.7 macrophages

  • Wijesinghe, W.A.J.P.;Kang, Min-Cheol;Lee, Won-Woo;Lee, Hyi-Seung;Kamada, Takashi;Vairappan, Charles S.;Jeon, You-Jin
    • ALGAE
    • /
    • v.29 no.4
    • /
    • pp.333-341
    • /
    • 2014
  • In this study, four compounds isolated from the red alga Laurencia snackeyi were evaluated for their potential anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. These compounds were tested for their inhibitory effects on nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells. Since $5{\beta}$-hydroxypalisadin B showed the best activity it was further tested for the production of prostaglandin-$E_2$ ($PGE_2$), expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the release of pro-inflammatory cytokines tumor necrotic factor-alpha (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), and interleukin-6 (IL-6). $5{\beta}$-Hydroxypalisadin B significantly reduced the $PGE_2$ release and suppressed the iNOS and COX-2 expression in LPS-stimulated RAW 264.7 cells. It also significantly reduced the release of pro-inflammatory cytokines TNF-${\alpha}$, IL-$1{\beta}$, and IL-6. These findings provide the first evidence of anti-inflammatory potential of $5{\beta}$-hydroxypalisadin B isolated from the red alga L. snackeyi and hence, it could be exploited as an active ingredient in pharmaceutical, nutraceutical and functional food applications.

The Comparative Study of Anti-inflammation and Anti-oxidation in Accodance with Extraction Solvents of Jeondo-san (전도산(顚倒散)의 추출용매에 따른 항염 및 항산화 비교 연구)

  • Seo, Hyung-Sik
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.23 no.2
    • /
    • pp.69-80
    • /
    • 2010
  • Objective : The purpose of this study was to compare anti-Inflammation and anti-oxidation of Jeondo-San(JDS) extracted with two kinds of solvents, ethanol and water. Methods : Two kinds of JDS extractions were prepared 20, 50, $100\;{\mu}g/mg$. The Cytotoxicity was measured by MTT assay in Raw 264.7 cell. The anti-inflammation effects were measured by inhibitory efficacy on $PGE_2$, NO, TNF-$\alpha$, COX-2 and iNOS in Raw 264.7 cell. The anti-oxidation effects were measured by ROS inhibitory efficacy, intracellular GSH synthesis and DPPH Radical scavenging in HaCaT cell. Results : 1. All of JDS extraction groups had no cytotoxicity in Raw 264.7 cell. 2. All of JDS extraction groups showed significantly inhibitory effect on production of $PGE_2$. Inhibitory efficacy increased in accodance with concentration. 3. All of JDS extraction groups showed significantly inhibitory effect on production of NO. Inhibitory efficacy increased in accodance with concentration. 4. All of JDS extraction groups did not show significantly inhibitory effect on production of TNF-$\alpha$. 5. $100\;{\mu}g/ml$ JDS extracted with ethanol and $50\;{\mu}g/ml$, $100\;{\mu}g/ml$ JDS extracted with water showed inhibitory effect on iNOS expression. 6. All of JDS extraction groups showed significantly inhibitory effect on production of ROS. Inhibitory efficacy increased in accodance with concentration. Ethanol extractions were better than water extractions. 7. $100\;{\mu}g/ml$ JDS extracted with ethanol only produced GSH of $32{\pm}5.2%$. 8. All of JDS extraction groups showed significantly scavenging effect of DPPH radicals. Inhibitory efficacy increased in accodance with concentration. Ethanol extractions were better than water extractions. Conclusion : Two kinds of JDS extractions have not cytotoxicity and inhibit production of NO. JDS extracted with water was effective in anti-inflammation, JDS extracted with ethanol was effective in anti-oxidation.

The effect of hyaluronic acid on anti-inflammatory action in mouse (마우스에서 히알우론산 나트륨이 항염효과에 미치는 영향에 관한 연구)

  • Kim, Sang-Kyun;Lee, Hyung-Seok;Byeon, Kwang-Seob;Lee, Young-Joo;Hong, Soon-Min;Choi, Mee-Ra;Park, Jun-Woo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • Purpose: The purpose of this study was not only to evaluate the relative mRNA expression of interleukin-$1{\beta}$(IL-$1{\beta}$), cyclooxygenase2 (COX-2) and prostaglandin E2 (PGE2) by RT-PCR analysis but to observe pattern of edema by light microscopic and electron microscope after topical apply of hyaluronic acid in inflammation-guided mouse. Material and methods: Mice of this study were devided into 4 groups: Control group (no inflammation guided), Positive control (inflammation guided + vaselin apply), Protopic group (inflammation guided + protopic apply), Hyaluronic group (inflammation guided + hyaluronic acid apply). Results: Hyaluronic group showed less expressions of IL-$1{\beta}$, COX-2, PGE2 than those of positive control & protopic group. Hyaluronic group revealed a decreased inflammation than positive control & protopic group in Light Microscope. Hyaluronic group appeared decreased edema of ear compare to positive control & protopic group in Elecron Microscope. Conclusion: It was considered that hyaluronic acid has an antiinflammatory effect for intercepting the gene expression of cytokines related to inflammation.

Anti-inflammation effect of extract from Zostera marina using UVB-induced damage on keratinocytes (잘피 추출물의 UVB로 손상을 유도한 각질형성세포에 대한 항염 효능)

  • Kim, Bo-Ae
    • The Korea Journal of Herbology
    • /
    • v.31 no.4
    • /
    • pp.87-91
    • /
    • 2016
  • Objectives : In order to confirm whether extracts of different parts of Zostera marina (ZM), a marine flowering plant, can be used as cosmetic ingredients, this study evaluated their cytotoxicity and cytoprotective effects against ultraviolet B (UVB). Inflammatory responses induced by UV stimuli are also associated with the aging of the skin.Methods : We investigated the effects of ZM extracts on cells through the water soluble tetrazolium salt-1(WST-1) assay for cell viability. In order to investigate the anti-inflammatory effects, we evaluated the suppression of Cyclooxygenase-2 (COX-2) expression by ZM extracts in HaCaT cells with UVB-induced damages, and also evaluated the production of Prostaglandin E2 (PGE2) in RAW 264.7 cells with LPS-induced damages.Results : High cell viabilities above 90% were observed in all types of ZM extracts, except for whole ZM extract at 0.5 mg/ml; in keratinocytes with UVB-induced damages, the cell viabilities were above 80% when treated with all types of ZM extracts. We confirmed their anti-inflammatory effects by investigating the suppression of inflammatory mediators. In keratinocytes with UVB-induced damages, COX-2 expression decreased in the experimental group treated with ZM extract. Similarly, in RAW 264.7 cells where inflammation was induced with LPS, the biosynthesis of PGE2 was inhibited.Conclusion : These results suggest that ethanol extracts from Zostera marina may have value as the potential anti-inflammatory medicinal plant. Also based on the abovementioned results, ZM extract protects skin cells from UV-induced damages, and thus can be used in topically applied products for skin protection.

Ethanol Extract of Forsythiae Fructus Inhibits the Production of Inflammatory Mediators in LPS-stimulated BV-2 Microglial Cells (연교 추출물의 Microglia에서 LPS에 의해 유도되는 염증매개물질 생성 억제 효과)

  • Kim, Sung-Yun;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.93-102
    • /
    • 2008
  • Objectives : Forsythiae Fructus (Forsythia koreana Nakai) has been used anti-inflammatory, diuretics, antidote, and antibacterials in traditional herbal medicine. The present study is focused on the inhibitory effect of Forsythiae Fructus ethanol extract (FF-E) on the production of inflammatory mediators such as NO, iNOS and proinflammatory cytokines ($TNF-{\alpha}$, $IL-1{\beta}$ and IL-6) in LPS-stimulated BV-2 cells, a mouse microglial cell line, and investigated the scavenging activity of FF-E. Methods : BV-2 cells were pre-incubated with FF-E for 30 min and then stimulated with LPS (1 ${\mu}g/m{\ell}$) at indicated times. Cell toxicity of GCF was determined by MTT assay. The levels of NO, PGE2 and cytokines were measured by Griess assay and ELISA. The mRNA and protein expressions of iNOS and cytokines were determined by RT-PCR and Western blotting. Free radical scavenging activity of GCF was determined by DPPH assay in tube test. Results : FF-E significantly inhibited the excessive production of NO, $PGE_2$, $TNF-{\alpha}$, and $IL-1{\beta}$ in LPS-stimulated BV-2 cells. In addition, FF-E attenuated the mRNA and protein expressions of iNOS, and proinflammatory cytokines. FF-E also significantly scavenged the DPPH free radicals in a dose-dependent manner. Conclusions : These results indicate that FF-E exhibits anti-inflammatory property by suppressing the transcription of inflammatory mediator genes, suggesting the anti-inflammatory property of FF-E may make it useful as a therapeutic agent for the treatment of human neurodegenerative diseases.

  • PDF

Antioxidant and Anti-inflammatory Properties of Two Extracts from Lycium ruthenicum Murray Fruit (흑구기자 열매의 생리활성 평가 연구)

  • Zou, Jie;Lee, Ji-An
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.190-198
    • /
    • 2021
  • The aim of the study was to evaluate the physiological activity of Lycium ruthenicum to investigate their potential as a raw material that can be used in the cosmetic industry. L. ruthenicum fruit extracts were obtained using 70% methanol(LRM) and hot-water(LRW). The DPPH and ABTS radical scavenging abilities were higher in the LRM extract than in the LRW extract. The FRAP value of LRM was about 1.3-fold greater than that of LRW. The polyphenol contents of LRM and LRW were 31.883±1.395 mg/g and 27.748±2.741 mg/g respectively. LRM inhibited the generation of NO in LPS-stimulated RAW264.7 cells. LRM also attenuated the expression of COX-2, PGE2, IL-6, and TNF-α induced by LPS. These results suggests that L. ruthenicum fruits could be use as a source of natural antioxidants and anti-inflammatory agent in cosmetic products.

Propofol protects against lipopolysaccharide-induced inflammatory response in human amnion-derived WISH cells

  • Kim, Cheul-Hong;Lee, Sang-Hoon;Yoon, Ji-Young;Kim, Eun-Jung;Joo, Jong Hoon;Kim, Yeon Ha;Choi, Eun-Ji
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.22 no.5
    • /
    • pp.369-376
    • /
    • 2022
  • Background: Nonobstetric surgery is sometimes required during pregnancy, and neck abscess or facial bone fracture surgery cannot be postponed in pregnant women. However, dental surgery can be stressful and can cause inflammation, and the inflammatory response is a well-known major cause of preterm labor. Propofol is an intravenous anesthetic commonly used for general anesthesia and sedation. Studies investigating the effect of propofol on human amnion are rare. The current study investigated the effects of propofol on lipopolysaccharide (LPS)-induced inflammatory responses in human amnion-derived WISH cells. Methods: WISH cells were exposed to LPS for 24 h and co-treated with various concentrations of propofol (0.01-1 ㎍/ml). Cell viability was measured using the MTT assay. Nitric oxide (NO) production was analyzed using a microassay based on the Griess reaction. The protein expression of cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE 2), p38, and phospho-p38 was analyzed using western blotting. Results: Propofol did not affect the viability and NO production of WISH cells. Co-treatment with LPS and propofol reduced COX-2 and PGE2 protein expression and inhibited p38 phosphorylation in WISH cells. Conclusion: Propofol does not affect the viability of WISH cells and inhibits LPS-induced expression of inflammatory factors. The inhibitory effect of propofol on inflammatory factor expression is likely mediated by the inhibition of p38 activation.