DOI QR코드

DOI QR Code

5β-Hydroxypalisadin B isolated from red alga Laurencia snackeyi attenuates inflammatory response in lipopolysaccharide-stimulated RAW 264.7 macrophages

  • Wijesinghe, W.A.J.P. (Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University) ;
  • Kang, Min-Cheol (School of Marine Biomedical Sciences, Jeju National University) ;
  • Lee, Won-Woo (School of Marine Biomedical Sciences, Jeju National University) ;
  • Lee, Hyi-Seung (Marine Natural Products Laboratory, Korea Ocean Research & Development Institute) ;
  • Kamada, Takashi (Laboratory of Natural Products Chemistry, Institute for Tropical Biology and Conservation, University Malaysia Sabah) ;
  • Vairappan, Charles S. (Laboratory of Natural Products Chemistry, Institute for Tropical Biology and Conservation, University Malaysia Sabah) ;
  • Jeon, You-Jin (School of Marine Biomedical Sciences, Jeju National University)
  • Received : 2014.03.06
  • Accepted : 2014.09.16
  • Published : 2014.12.15

Abstract

In this study, four compounds isolated from the red alga Laurencia snackeyi were evaluated for their potential anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. These compounds were tested for their inhibitory effects on nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells. Since $5{\beta}$-hydroxypalisadin B showed the best activity it was further tested for the production of prostaglandin-$E_2$ ($PGE_2$), expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the release of pro-inflammatory cytokines tumor necrotic factor-alpha (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), and interleukin-6 (IL-6). $5{\beta}$-Hydroxypalisadin B significantly reduced the $PGE_2$ release and suppressed the iNOS and COX-2 expression in LPS-stimulated RAW 264.7 cells. It also significantly reduced the release of pro-inflammatory cytokines TNF-${\alpha}$, IL-$1{\beta}$, and IL-6. These findings provide the first evidence of anti-inflammatory potential of $5{\beta}$-hydroxypalisadin B isolated from the red alga L. snackeyi and hence, it could be exploited as an active ingredient in pharmaceutical, nutraceutical and functional food applications.

Keywords

References

  1. Ahmad, N., Chen, L. C., Gordon, M. A., Laskin, J. D. & Laskin, D. L. 2002. Regulation of cyclooxygenase-2 by nitric oxide in activated hepatic macrophages during acute endotoxemia. J. Leukoc. Biol. 71:1005-1011.
  2. Chang, Y. C., Li, P. C., Chen, B. C., Chang, M. S., Wang, J. L., Chiu, W. T. & Lin, C. H. 2006. Lipoteichoic acid-induced nitric oxide synthase expression in RAW 264.7 macrophages is mediated by cyclooxygenase-2, prostaglandin $E_2$, protein kinase A, p38 MAPK, and nuclear factor-${\kappa}$B pathways. Cell Signal. 18:1235-1243. https://doi.org/10.1016/j.cellsig.2005.10.005
  3. Cho, J. Y., Baik, K. U., Jung, J. H. & Park, M. H. 2000. In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa. Eur. J. Pharmacol. 398:399-407. https://doi.org/10.1016/S0014-2999(00)00337-X
  4. Heo, S.-J., Yoon, W.-J., Kim, K.-N., Ahn, G.-N., Kang, S.-M., Kang, D.-H., Affan, A., Oh, C., Jung, W.-K. & Jeon, Y.-J. 2010. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 48:2045-2051. https://doi.org/10.1016/j.fct.2010.05.003
  5. Hernandez-Ledesma, B., Hsieh, C.-C. & de Lumen, B. O. 2009. Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 390:803-808. https://doi.org/10.1016/j.bbrc.2009.10.053
  6. Kamada, T. & Vairappan, C. S. 2012. A new bromoallene-producing chemical type of the red alga Laurencia nangii Masuda. Molecules. 17:2119-2125. https://doi.org/10.3390/molecules17022119
  7. Kang, S.-M., Kim, K.-N., Lee, S.-H., Ahn, G., Cha, S.-H., Kim, A.-D., Yang, X.-D., Kang, M.-C. & Jeon, Y.-J. 2011. Anti-inflammatory activity of polysaccharide purified from AMG-assistant extract of Ecklonia cava in LPS-stimulated RAW 264.7 macrophages. Carbohydr. Polym. 85:80-85. https://doi.org/10.1016/j.carbpol.2011.01.052
  8. Kim, J.-K., Oh, S.-M., Kwon, H.-S., Oh, Y.-S., Lim, S. S. & Shin, H.-K. 2006. Anti-inflammatory effect of roasted licorice extracts on lipopolysaccharide-induced inflammatory responses in murine macrophages. Biochem. Biophys. Res. Commun. 345:1215-1223. https://doi.org/10.1016/j.bbrc.2006.05.035
  9. Kuniyoshi, M., Marma, M. S., Higa, T., Bernardinelli, G. & Jefford, C. W. 2001. New bromoterpenes from the red alga Laurencia luzonensis. J. Nat. Prod. 64:696-700. https://doi.org/10.1021/np000638o
  10. Lee, J.-H., Cho, J. H., Yeo, J., Lee, S. H., Yang, S. H., Sung, Y. C., Kang, J.-H. & Park, C.-S. 2013a. The pharmacology study of a new recombinant TNF receptor-hyFc fusion protein. Biologicals 41:77-83. https://doi.org/10.1016/j.biologicals.2012.09.001
  11. Lee, M. H., Lee, J. M., Jun, S. H., Lee, S. H., Kim, N. W., Lee, J. H., Ko, N. Y., Mun, S. H., Kim, B. K., Lim, B. O., Choi, D. K. & Choi, W. S. 2007. The anti-inflammatory effects of Pyrolaeherba extract through the inhibition of the expression of inducible nitric oxide synthase (iNOS) and NO production. J. Ethnopharmacol. 112:49-54. https://doi.org/10.1016/j.jep.2007.01.036
  12. Lee, S.-H., Kang, M.-C., Moon, S.-H., Jeon, B.-T. & Jeon, Y.-J. 2013b. Potential use of ultrasound in antioxidant extraction from Ecklonia cava. Algae 28:371-378. https://doi.org/10.4490/algae.2013.28.4.371
  13. Lee, W.-W., Ahn, G., Wijesinghe, W. A. J. P., Yang, X., Ko, C.-I., Kang, M.-C., Lee, B.-J. & Jeon, Y.-J. 2011. Enzyme-assisted extraction of Ecklonia cava fermented with Lactobacillus brevis and isolation of an anti-inflammatory polysaccharide. Algae 26:343-350. https://doi.org/10.4490/algae.2011.26.4.343
  14. Mao, S.-C. & Guo, Y.-W. 2010. Sesquiterpenes from Chinese red algae Laurencia okamurai. Chin. J. Nat. Med. 8:321-325.
  15. Mohsin, S. & Kurup, G. M. 2011. Mechanism underlying the anti-inflammatory effect of sulphated polysaccharide from Padina tetrastromatica against carrageenan induced paw edema in rats. Biomed. Prev. Nutr. 1:294-301. https://doi.org/10.1016/j.bionut.2011.09.004
  16. Nakagawa, T. 2011. Roles of prostaglandin $E_2$ in the cochlea. Hear Res. 276:27-33. https://doi.org/10.1016/j.heares.2011.01.015
  17. Paul, V. J. & Fenical, W. 1980. Palisadins A, B and related monocyclofarnesol-derived sesquiterpenoids from the red marine alga Laurencia cf. palisada. Tetrahedron Lett. 21:2787-2790. https://doi.org/10.1016/S0040-4039(00)78607-2
  18. Savonenko, A., Munoz, P., Melnikova, T., Wang, Q., Liang, X., Breyer, R. M., Montine, T. J., Kirkwood, A. & Andreasson, K. 2009. Impaired cognition, sensorimotor gating, and hippocampal long-term depression in mice lacking the prostaglanding E2 EP2 receptor. Exp. Neurol. 217:63-73. https://doi.org/10.1016/j.expneurol.2009.01.016
  19. Suzuki, M., Takahashi, Y., Mitome, Y., Itoh, T., Abe, T. & Masuda, M. 2002. Brominated metabolites from an Okinawan Laurencia intricate. Phytochemistry 60:861-867. https://doi.org/10.1016/S0031-9422(02)00151-6
  20. Suzuki, M. & Vairappan, C. S. 2005. Halogenated secondary metabolites from Japanese species of the red algal genus Laurencia (Rhodomelaceae, Ceramiales). Curr. Top. Phytochem. 7:1-34.
  21. Tan, K. L., Matsunaga, S. & Vairappan, C. S. 2011. Halogenated chamigranes of red alga Laurencia snackeyi (Webervan Bosse) Masuda from Sulu-Sulawesi sea. Biochem. Syst. Ecol. 39:213-215. https://doi.org/10.1016/j.bse.2010.09.017
  22. Toma, L., Stancu, C. S., Sanda, G. M. & Sima, A. V. 2011. Antioxidant and anti-inflammatory mechanisms of amlodipine action to improve endothelial cell dysfunction induced by irreversibly glycated LDL. Biochem. Biophys. Res. Commun. 411:202-207. https://doi.org/10.1016/j.bbrc.2011.06.137
  23. Tripathi, P., Patel, R. K., Tripathi, R. & Kanzariya, N. R. 2013. Investigation of antigenotoxic potential of Syzygium cumini extract (SCE) on cyclophosphamide-induced genotoxicity and oxidative stress in mice. Drug Chem. Toxicol. 36:396-402. https://doi.org/10.3109/01480545.2012.749271
  24. Vairappan, C. S. 2003. Potent antibacterial activity of halogenated metabolites from Malaysian red algae, Laurencia majuscula (Rhodomelaceae, Ceramiales). Biomol. Eng. 20:255-259. https://doi.org/10.1016/S1389-0344(03)00067-4
  25. Vairappan, C. S., Suzuki, M., Ishii, T., Okino, T., Abe, T. & Masuda, M. 2008. Antibacterial activity of halogenated sesquiterpenes from Malaysian Laurencia spp. Phytochemistry 69:2490-2494. https://doi.org/10.1016/j.phytochem.2008.06.015
  26. Wijesinghe, W. A. J. P., Ahn, G., Lee, W.-W., Kang, M.-C., Kim, E.-A. & Jeon, Y.-J. 2013. Anti-inflammatory activity of phlorotannin-rich fermented Ecklonia cava processing by-product extract in lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Appl. Phycol. 25:1207-1213. https://doi.org/10.1007/s10811-012-9939-5

Cited by

  1. A fucoidan fraction purified from Chnoospora minima ; a potential inhibitor of LPS-induced inflammatory responses vol.104, 2017, https://doi.org/10.1016/j.ijbiomac.2017.07.031
  2. Identification of sterols from the soft coral Dendronephthya gigantea and their anti-inflammatory potential vol.55, 2017, https://doi.org/10.1016/j.etap.2017.08.003
  3. Marine natural products vol.33, pp.3, 2016, https://doi.org/10.1039/C5NP00156K
  4. Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae vol.32, pp.3, 2017, https://doi.org/10.4490/algae.2017.32.8.14
  5. UHPLC-MS/MS profiling of Aplysia depilans and assessment of its potential therapeutic use: Interference on iNOS expression in LPS-stimulated RAW 264.7 macrophages and caspase-mediated pro-apoptotic effect on SH-SY5Y cells vol.37, 2017, https://doi.org/10.1016/j.jff.2017.07.053
  6. Sargassum horneri (Turner) C. Agardh ethanol extract inhibits the fine dust inflammation response via activating Nrf2/HO-1 signaling in RAW 264.7 cells vol.18, pp.1, 2018, https://doi.org/10.1186/s12906-018-2314-6
  7. and its potent antioxidant and anti-inflammatory activities pp.01458884, 2018, https://doi.org/10.1111/jfbc.12628
  8. Phytosterols Suppress Phagocytosis and Inhibit Inflammatory Mediators via ERK Pathway on LPS-Triggered Inflammatory Responses in RAW264.7 Macrophages and the Correlation with Their Structure vol.8, pp.11, 2014, https://doi.org/10.3390/foods8110582
  9. Marine Pharmacology in 2014–2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affe vol.18, pp.1, 2020, https://doi.org/10.3390/md18010005
  10. Meroterpenoids from the Brown Alga Cystoseira usneoides as Potential Anti-Inflammatory and Lung Anticancer Agents vol.18, pp.4, 2014, https://doi.org/10.3390/md18040207
  11. Anti-Inflammatory Effects of Sulfated Polysaccharide from Sargassum swartzii in Macrophages via Blocking TLR/NF-Κb Signal Transduction vol.18, pp.12, 2014, https://doi.org/10.3390/md18120601