References
- Ahmad, N., Chen, L. C., Gordon, M. A., Laskin, J. D. & Laskin, D. L. 2002. Regulation of cyclooxygenase-2 by nitric oxide in activated hepatic macrophages during acute endotoxemia. J. Leukoc. Biol. 71:1005-1011.
-
Chang, Y. C., Li, P. C., Chen, B. C., Chang, M. S., Wang, J. L., Chiu, W. T. & Lin, C. H. 2006. Lipoteichoic acid-induced nitric oxide synthase expression in RAW 264.7 macrophages is mediated by cyclooxygenase-2, prostaglandin
$E_2$ , protein kinase A, p38 MAPK, and nuclear factor-${\kappa}$ B pathways. Cell Signal. 18:1235-1243. https://doi.org/10.1016/j.cellsig.2005.10.005 - Cho, J. Y., Baik, K. U., Jung, J. H. & Park, M. H. 2000. In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa. Eur. J. Pharmacol. 398:399-407. https://doi.org/10.1016/S0014-2999(00)00337-X
- Heo, S.-J., Yoon, W.-J., Kim, K.-N., Ahn, G.-N., Kang, S.-M., Kang, D.-H., Affan, A., Oh, C., Jung, W.-K. & Jeon, Y.-J. 2010. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 48:2045-2051. https://doi.org/10.1016/j.fct.2010.05.003
- Hernandez-Ledesma, B., Hsieh, C.-C. & de Lumen, B. O. 2009. Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 390:803-808. https://doi.org/10.1016/j.bbrc.2009.10.053
- Kamada, T. & Vairappan, C. S. 2012. A new bromoallene-producing chemical type of the red alga Laurencia nangii Masuda. Molecules. 17:2119-2125. https://doi.org/10.3390/molecules17022119
- Kang, S.-M., Kim, K.-N., Lee, S.-H., Ahn, G., Cha, S.-H., Kim, A.-D., Yang, X.-D., Kang, M.-C. & Jeon, Y.-J. 2011. Anti-inflammatory activity of polysaccharide purified from AMG-assistant extract of Ecklonia cava in LPS-stimulated RAW 264.7 macrophages. Carbohydr. Polym. 85:80-85. https://doi.org/10.1016/j.carbpol.2011.01.052
- Kim, J.-K., Oh, S.-M., Kwon, H.-S., Oh, Y.-S., Lim, S. S. & Shin, H.-K. 2006. Anti-inflammatory effect of roasted licorice extracts on lipopolysaccharide-induced inflammatory responses in murine macrophages. Biochem. Biophys. Res. Commun. 345:1215-1223. https://doi.org/10.1016/j.bbrc.2006.05.035
- Kuniyoshi, M., Marma, M. S., Higa, T., Bernardinelli, G. & Jefford, C. W. 2001. New bromoterpenes from the red alga Laurencia luzonensis. J. Nat. Prod. 64:696-700. https://doi.org/10.1021/np000638o
- Lee, J.-H., Cho, J. H., Yeo, J., Lee, S. H., Yang, S. H., Sung, Y. C., Kang, J.-H. & Park, C.-S. 2013a. The pharmacology study of a new recombinant TNF receptor-hyFc fusion protein. Biologicals 41:77-83. https://doi.org/10.1016/j.biologicals.2012.09.001
- Lee, M. H., Lee, J. M., Jun, S. H., Lee, S. H., Kim, N. W., Lee, J. H., Ko, N. Y., Mun, S. H., Kim, B. K., Lim, B. O., Choi, D. K. & Choi, W. S. 2007. The anti-inflammatory effects of Pyrolaeherba extract through the inhibition of the expression of inducible nitric oxide synthase (iNOS) and NO production. J. Ethnopharmacol. 112:49-54. https://doi.org/10.1016/j.jep.2007.01.036
- Lee, S.-H., Kang, M.-C., Moon, S.-H., Jeon, B.-T. & Jeon, Y.-J. 2013b. Potential use of ultrasound in antioxidant extraction from Ecklonia cava. Algae 28:371-378. https://doi.org/10.4490/algae.2013.28.4.371
- Lee, W.-W., Ahn, G., Wijesinghe, W. A. J. P., Yang, X., Ko, C.-I., Kang, M.-C., Lee, B.-J. & Jeon, Y.-J. 2011. Enzyme-assisted extraction of Ecklonia cava fermented with Lactobacillus brevis and isolation of an anti-inflammatory polysaccharide. Algae 26:343-350. https://doi.org/10.4490/algae.2011.26.4.343
- Mao, S.-C. & Guo, Y.-W. 2010. Sesquiterpenes from Chinese red algae Laurencia okamurai. Chin. J. Nat. Med. 8:321-325.
- Mohsin, S. & Kurup, G. M. 2011. Mechanism underlying the anti-inflammatory effect of sulphated polysaccharide from Padina tetrastromatica against carrageenan induced paw edema in rats. Biomed. Prev. Nutr. 1:294-301. https://doi.org/10.1016/j.bionut.2011.09.004
-
Nakagawa, T. 2011. Roles of prostaglandin
$E_2$ in the cochlea. Hear Res. 276:27-33. https://doi.org/10.1016/j.heares.2011.01.015 - Paul, V. J. & Fenical, W. 1980. Palisadins A, B and related monocyclofarnesol-derived sesquiterpenoids from the red marine alga Laurencia cf. palisada. Tetrahedron Lett. 21:2787-2790. https://doi.org/10.1016/S0040-4039(00)78607-2
- Savonenko, A., Munoz, P., Melnikova, T., Wang, Q., Liang, X., Breyer, R. M., Montine, T. J., Kirkwood, A. & Andreasson, K. 2009. Impaired cognition, sensorimotor gating, and hippocampal long-term depression in mice lacking the prostaglanding E2 EP2 receptor. Exp. Neurol. 217:63-73. https://doi.org/10.1016/j.expneurol.2009.01.016
- Suzuki, M., Takahashi, Y., Mitome, Y., Itoh, T., Abe, T. & Masuda, M. 2002. Brominated metabolites from an Okinawan Laurencia intricate. Phytochemistry 60:861-867. https://doi.org/10.1016/S0031-9422(02)00151-6
- Suzuki, M. & Vairappan, C. S. 2005. Halogenated secondary metabolites from Japanese species of the red algal genus Laurencia (Rhodomelaceae, Ceramiales). Curr. Top. Phytochem. 7:1-34.
- Tan, K. L., Matsunaga, S. & Vairappan, C. S. 2011. Halogenated chamigranes of red alga Laurencia snackeyi (Webervan Bosse) Masuda from Sulu-Sulawesi sea. Biochem. Syst. Ecol. 39:213-215. https://doi.org/10.1016/j.bse.2010.09.017
- Toma, L., Stancu, C. S., Sanda, G. M. & Sima, A. V. 2011. Antioxidant and anti-inflammatory mechanisms of amlodipine action to improve endothelial cell dysfunction induced by irreversibly glycated LDL. Biochem. Biophys. Res. Commun. 411:202-207. https://doi.org/10.1016/j.bbrc.2011.06.137
- Tripathi, P., Patel, R. K., Tripathi, R. & Kanzariya, N. R. 2013. Investigation of antigenotoxic potential of Syzygium cumini extract (SCE) on cyclophosphamide-induced genotoxicity and oxidative stress in mice. Drug Chem. Toxicol. 36:396-402. https://doi.org/10.3109/01480545.2012.749271
- Vairappan, C. S. 2003. Potent antibacterial activity of halogenated metabolites from Malaysian red algae, Laurencia majuscula (Rhodomelaceae, Ceramiales). Biomol. Eng. 20:255-259. https://doi.org/10.1016/S1389-0344(03)00067-4
- Vairappan, C. S., Suzuki, M., Ishii, T., Okino, T., Abe, T. & Masuda, M. 2008. Antibacterial activity of halogenated sesquiterpenes from Malaysian Laurencia spp. Phytochemistry 69:2490-2494. https://doi.org/10.1016/j.phytochem.2008.06.015
- Wijesinghe, W. A. J. P., Ahn, G., Lee, W.-W., Kang, M.-C., Kim, E.-A. & Jeon, Y.-J. 2013. Anti-inflammatory activity of phlorotannin-rich fermented Ecklonia cava processing by-product extract in lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Appl. Phycol. 25:1207-1213. https://doi.org/10.1007/s10811-012-9939-5
Cited by
- A fucoidan fraction purified from Chnoospora minima ; a potential inhibitor of LPS-induced inflammatory responses vol.104, 2017, https://doi.org/10.1016/j.ijbiomac.2017.07.031
- Identification of sterols from the soft coral Dendronephthya gigantea and their anti-inflammatory potential vol.55, 2017, https://doi.org/10.1016/j.etap.2017.08.003
- Marine natural products vol.33, pp.3, 2016, https://doi.org/10.1039/C5NP00156K
- Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae vol.32, pp.3, 2017, https://doi.org/10.4490/algae.2017.32.8.14
- UHPLC-MS/MS profiling of Aplysia depilans and assessment of its potential therapeutic use: Interference on iNOS expression in LPS-stimulated RAW 264.7 macrophages and caspase-mediated pro-apoptotic effect on SH-SY5Y cells vol.37, 2017, https://doi.org/10.1016/j.jff.2017.07.053
- Sargassum horneri (Turner) C. Agardh ethanol extract inhibits the fine dust inflammation response via activating Nrf2/HO-1 signaling in RAW 264.7 cells vol.18, pp.1, 2018, https://doi.org/10.1186/s12906-018-2314-6
- and its potent antioxidant and anti-inflammatory activities pp.01458884, 2018, https://doi.org/10.1111/jfbc.12628
- Phytosterols Suppress Phagocytosis and Inhibit Inflammatory Mediators via ERK Pathway on LPS-Triggered Inflammatory Responses in RAW264.7 Macrophages and the Correlation with Their Structure vol.8, pp.11, 2014, https://doi.org/10.3390/foods8110582
- Marine Pharmacology in 2014–2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affe vol.18, pp.1, 2020, https://doi.org/10.3390/md18010005
- Meroterpenoids from the Brown Alga Cystoseira usneoides as Potential Anti-Inflammatory and Lung Anticancer Agents vol.18, pp.4, 2014, https://doi.org/10.3390/md18040207
- Anti-Inflammatory Effects of Sulfated Polysaccharide from Sargassum swartzii in Macrophages via Blocking TLR/NF-Κb Signal Transduction vol.18, pp.12, 2014, https://doi.org/10.3390/md18120601