• Title/Summary/Keyword: $PGE_{2}$

Search Result 1,080, Processing Time 0.03 seconds

Feline adipose tissue-derived mesenchymal stem cells pretreated with IFN-γ enhance immunomodulatory effects through the PGE2 pathway

  • Park, Seol-Gi;An, Ju-Hyun;Li, Qiang;Chae, Hyung-Kyu;Park, Su-Min;Lee, Jeong-Hwa;Ahn, Jin-Ok;Song, Woo-Jin;Youn, Hwa-Young
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.16.1-16.13
    • /
    • 2021
  • Background: Preconditioning with inflammatory stimuli is used to improve the secretion of anti-inflammatory agents in stem cells from variant species such as mouse, human, and dog. However, there are only few studies on feline stem cells. Objectives: This study aimed to evaluate the immune regulatory capacity of feline adipose tissue-derived (fAT) mesenchymal stem cells (MSCs) pretreated with interferon-gamma (IFN-γ). Methods: To assess the interaction of lymphocytes and macrophages with IFN-γ-pretreated fAT-MSCs, mouse splenocytes and RAW 264.7 cells were cultured with the conditioned media from IFN-γ-pretreated MSCs. Results: Pretreatment with IFN-γ increased the gene expression levels of cyclooxygenase-2, indoleamine 2,3-dioxygenase, hepatocyte growth factor, and transforming growth factor-beta 1 in the MSCs. The conditioned media from IFN-γ-pretreated MSCs increased the expression levels of M2 macrophage markers and regulatory T-cell markers compared to those in the conditioned media from naive MSCs. Further, prostaglandin E2 (PGE2) inhibitor NS-398 attenuated the immunoregulatory potential of MSCs, suggesting that the increased PGE2 levels induced by IFN-γ stimulation is a crucial factor in the immune regulatory capacity of MSCs pretreated with IFN-γ. Conclusions: IFN-γ pretreatment improves the immune regulatory profile of fAT-MSCs mainly via the secretion of PGE2, which induces macrophage polarization and increases regulatory T-cell numbers.

Cordycepin Inhibits LPS-induced Cell Migration and Invasion in Human Colorectal Carcinoma HCT116 cells through Down-regulation of Prostaglandin E2-EP4 Receptor (LPS 유도된 HCT116 인간 대장암세포에서 cordycepin의 prostaglandin E2-EP4 receptor 감소 조절을 통한 세포의 이동과 전이 억제 효과)

  • Jung Eun Kim;Bo-Ram Kim;Su Hui Seong;Jin-Ho Kim;Ha-Nul Lee;Chan Seo;Ji Min Jung;Su A Im;Kyung-Min Choi;Jin-Woo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.50-50
    • /
    • 2023
  • Prostaglandin E2(PGE2), a major product of cyclooxygenase-2 (COX-2), plays an important role in the carcinogenesis of many solid tumors, including colorectal cancer. Because PGE2 functions by signaling through PGE2 receptors (Eps), which regulate tumor cell growth, invasion, and migration, there has been a growing amount of interest in the therapeutic potential of targeting Eps. In the present study, we investigated the role of EP4 on the effectiveness of cordycepin in inhibititing the migration and invasion of HCT116 human colorectal carcinoma cells. Our data indicate that cordycepin suppressed lipopolysaccharide (LPS)-enhanced cell migration and invasion through the inactivation of matrix metalloproteinases (MMP)-9 as well as the down-regulation of COX-2 expression and PGE2 production. These events were shown to be associated with the inactivation of EP4 and activation of AMP-activated protein kinase (AMPK). Moreover, the AMPK inhibitor, compound C, as well as AMPK knockdown via siRNA, attenuated the cordycepin-induced inhibition of EP4 expression. Cordycepin treatment also reduced the activation of CREB. These findings indicate that cordycepin suppresses the migration and invasion of HCT116 cells. Through modulating EP4 expression and the AMPK-CREB signaling pathway. Therefore, cordycepin has the potential to serve as a potent anti-cancer agent in therapeutic strategies against colorectal cancer metastasis.

  • PDF

Cordycepin inhibits lipopolysaccharide-induced cell migration and invasion in human colorectal carcinoma HCT-116 cells through down-regulation of prostaglandin E2 receptor EP4

  • Jeong, Jin-Woo;Park, Cheol;Cha, Hee-Jae;Hong, Su Hyun;Park, Shin-Hyung;Kim, Gi-Young;Kim, Woo Jean;Kim, Cheol Hong;Song, Kyoung Seob;Choi, Yung Hyun
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.532-537
    • /
    • 2018
  • Prostaglandin $E_2$ ($PGE_2$), a major product of cyclooxygenase-2 (COX-2), plays an important role in the carcinogenesis of many solid tumors, including colorectal cancer. Because $PGE_2$ functions by signaling through $PGE_2$ receptors (EPs), which regulate tumor cell growth, invasion, and migration, there has been a growing amount of interest in the therapeutic potential of targeting EPs. In the present study, we investigated the role of EP4 on the effectiveness of cordycepin in inhibiting the migration and invasion of HCT116 human colorectal carcinoma cells. Our data indicate that cordycepin suppressed lipopolysaccharide (LPS)-enhanced cell migration and invasion through the inactivation of matrix metalloproteinase (MMP)-9 as well as the down-regulation of COX-2 expression and $PGE_2$ production. These events were shown to be associated with the inactivation of EP4 and activation of AMP-activated protein kinase (AMPK). Moreover, the EP4 antagonist AH23848 prevented LPS-induced MMP-9 expression and cell invasion in HCT116 cells. However, the AMPK inhibitor, compound C, as well as AMPK knockdown via siRNA, attenuated the cordycepin-induced inhibition of EP4 expression. Cordycepin treatment also reduced the activation of CREB. These findings indicate that cordycepin suppresses the migration and invasion of HCT116 cells through modulating EP4 expression and the AMPK-CREB signaling pathway. Therefore, cordycepin has the potential to serve as a potent anti-cancer agent in therapeutic strategies against colorectal cancer metastasis.

Effects of Parsley Extract on Skin Anti-aging and Anti-irritation (파슬리추출물의 피부 노화 방지와 자극 완화에 대한 효과)

  • 김수남;이소희;최규호;장이섭;이병곤
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.79-83
    • /
    • 2004
  • In order to investigate the beneficial effects of parsely (Petroselinurn sativum) extract on skin, we measured the synthesis of total collagen and type I procollagen in cultured normal human fibroblast (NHF), the synthesis of prostaglandin E$_2$(PCE$_2$), interleukin 1 ${\alpha}$(IL -1 ${\alpha}$) and tumor necrosis factor ${\alpha}$ (TNF ${\alpha}$) in HaCaT cell and we also measured dermal thickness and density in hairless mouse (Female albino hairless mice, Skh:hr-1). As the results, the synthesis of total collagen and type I procollagen were increased 23% and 18% respectively, after 1 $\mu\textrm{g}$/mL parsley extract treatment. The producions of PGE$_2$ induced by UVB irradiation were decreased 60% after 1 $\mu\textrm{g}$/mL parsley extract treatment. The treatment with 1 $\mu\textrm{g}$/mL parsley extract also decreased the synthesis of IL -1 ${\alpha}$ and TNF ${\alpha}$ induced by 10 uM RA, 100 $\mu\textrm{g}$/mL SLS and 30 mJ/$\textrm{cm}^2$ UVB irradiation, After 4 days treatment with 1% parsley extract, the dermal thickness of hairless mouse was increased 1.5 times and the density of dermis was tighter than control. These results indicate that parsley extract have anti-aging and anti-irritation effects on skin.

Inflammatory Mediators Modulate NK Cell-stimulating Activity of Dendritic Cells by Inducing Development of Polarized Effector Function

  • Kim, Kwang-Dong;Choi, Seung-Chul;Lee, Eun-Sil;Kim, Ae-Yung;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • v.7 no.3
    • /
    • pp.133-140
    • /
    • 2007
  • Background: It is well established that cross talk between natural killer (NK) cells and myeloid dendritic cells (DC) leads to NK cell activation and DC maturation. In the present study, we investigated whether type 1-polarized DC (DC1) matured in the presence of IFN-${\gamma}$ and type 2-polarized DC (DC2) matured in the presence of PGE2 can differentially activate NK cells. Methods: In order to generate DC, plastic adherent monocytes were cultured in RPMI 1640 containing GM-CSF and IL-4. At day 6, maturation was induced by culturing the cells for 2 days with cytokines or PGE2 in the presence or absence of LPS. Each population of DC was cocultured with NK cells for 24 h. The antigen expression on DC was analyzed by flow cytometry and cytokine production in culture supernatant was measured by ELISA or a bioassay for TNF-${\alpha}$ determination. NK cell-mediated lysis was determined using a standard 4h chromium release assay. Results: DC2, unlike DC1, had weak, if any, ability to induce NK cell activation as measured by IFN-${\gamma}$ production and cytolytic activity. DC2 were weakly stimulated by activated NK cells compared to DC1. In addition, IFN-${\gamma}$-primed mature DC appeared to be most resistant to active NK cell-mediated lysis even at a high NK cell/DC ratio. On the other hand, PGE2-primed DC were less resistant to feedback regulation by NK cells than IFN-${\gamma}$-primed mature DC. Finally, we showed that the differential effect of two types of DC population on NK cell activity is not due to differences in their ability to form conjugates with NK cells. Conclusion: These results suggest that different combinations of inflammatory mediators differentially affect the effector function of DC and, as a result, the function of NK cells, eventually leading to distinct levels of activation in adaptive immunity.

Anti-inflammatory and Anti-Atopic Effects of Crude Extracts and Solvent Fractions of Phormium tenax leaf (신서란(Phormium tenax) 잎 조추출물 및 용매 분획물의 항염증 및 항아토피 효과)

  • Yang, Kwon Min;Song, Sang mok;Lee, Doseung;Yoon, Weon-Jong;Kim, Chan-Shick;Kim, Chang Sook
    • Korean Journal of Plant Resources
    • /
    • v.32 no.5
    • /
    • pp.433-441
    • /
    • 2019
  • This study describes a preliminary evaluation of the anti-inflammatory activity and anti-atopic activity of Phormium tenax leaf extracts. P. tenax leaf was extracted using 70% ethanol and then fractionated sequentially with n-hexane, methylene chloride, ethyl acetate, n-butanol. In order to effectively screen for anti-inflammatory agents, we first investigated the inhibitory effects of P. tenax leaf crude extracts and solvent fractions on production of pro-inflammatory factors[nitric oxide(NO), prostaglandin $E_2(PGE_2)$, inducible nitric oxide synthase(iNOS) and cyclooxygenase-2(COX-2)] and pro-inflammatory cytokines [tumor necrosis $factor-{\alpha}(TNF-{\alpha})$, interleukin-6(IL-6) and $interleukin-1{\beta}(IL-1{\beta})$] in lipopolysaccharide(LPS)-stimulated RAW 264.7 cells. In addition, we also evaluated of their inhibitory effect on the atopic dermatitis-like inflammatory markers such as macrophage-derived chemokine(MDC) and thymus and activation-regulated chemokine(TARC) in HaCaT cells. Among the five solvent fractions of P. tenax, methylene chloride and ethyl acetate fractions inhibited production of pro-inflammatory factors and pro-inflammatory cytokines in a dose dependent manner, respectively. These fractions were also showed inhibitory activity for MDC and TARC expression levels in $IFN-{\gamma}-stimulated$ HaCaT cells, respectively. These results suggest that P. tenax have significantly effects of anti-inflammatory activity and anti-atopic activity that might be beneficial for the topical treatment of inflammatory skin disorders.

Effects of Transforming Growth Factor-β and Epidermal Growth Factor on the Osteoclast-like Cell Formation in the Mouse Bone Marrow Cell Culture (마우스 골수세포 배양시 transforming growth factor-β와 epidermal growth factor가 파골세포양세포의 형성에 미치는 영향)

  • Lim, Choong-Nam;Ko, Seon-Yle;Kim, Jung-Keun;Kim, Se-Won
    • Journal of Oral Medicine and Pain
    • /
    • v.25 no.1
    • /
    • pp.53-62
    • /
    • 2000
  • Bone marrow culture systems are widely used to differentiate osteoclast-like cells in vitro using several osteotropic hormones. In this study, we isolated and cultured the mouse bone marrow cells with or without some osteotropic hormones such as parathyroid hormone(PTH), prostaglandin $E_2(PGE_2)$ and $l,25(OH)_2-vitamin$ $D_3$(Vit. $D_3$). We confirmed the formation of osteoclast-like cells morphologically and functionally by the expression of tartrate-resistant acid phosphatase(TRAP) and by their capability to resorb dentin slices. We also studied the effects of transforming growth $factor-{\beta}(TGF-{\beta})$ and epidermal growth factor(EGF) on the Vit. $D_3-induced$ osteoclast-like cell formation. In control, a few multinucleated cells were formed whereas PTH and $PGE_2$ increased the number of multinucleated cells. PTH, $PGE_2$ and Vit. $D_3$ induced the formation of TRAP-positive multinucleated cells. After culture of mouse bone marrow cells on the dentin slices with or without osteotropic hormones, giant cells with diverse morphology were found on the dentin slices under the scanning electronmicroscopy. After removing the attached cells, resorption pits were identified on the dentin slices, and the shape of resorption pits was variable. EGF increased the osteoclast-like cell formation induced by Vit. $D_3$, however, $TGF-{\beta}$ showed biphasic effect, which at low concentration, increased and at high concentration, decreased the osteoclast-like cell formation induced by Vit. $D_3$.

  • PDF

Anti-inflammtory effects of the MeOH extract of Petiolus Nelumbinis (LPS로 활성화된 RAW 264.7 cell에서 하경(荷梗)의 염증매개물질 억제효과)

  • Lee, Won-Uk;Jo, Mi-Jeong;Park, Sang-Mi;Jung, Ji-Yun;Kim, Sang-Chan
    • Herbal Formula Science
    • /
    • v.17 no.1
    • /
    • pp.175-185
    • /
    • 2009
  • Petiolus Nelumbinis, branches of lotus leaf or lotus flower is a traditional oriental herbal medicine widely used for treating a superheat or disorder of qi flow. Although there are many clinical results and literature study, it has been rarely conducted to evaluate the immuno-biological activity. The present study was conducted to examine the anti-inflammatory effects of PNM (Petiolus Nelumbinis MeOH extract) in vitro. To determine cytotoxic concentration of PNM, the cells were treated with PNM for 24 h after LPS addition, and the cell viability was tested by MTT assay. Both of dosages (30 and 100 ${\mu}g/ml$) of PNM had no cytotoxicity. In these concentrations, PNM significantly reduced the elevated levels of NO and $PGE_2$ by LPS. These inhibitory effects of PNM were due to the reduced expressions of iNOS and COX-2 protein. TNF-$\alpha$, IL-1$\beta$ and IL-6 are frequently encountered pro-inflammatory cytokines, and LPS plays a key role in inducing to the massive production of these cytokines. Thus, we next determined the levels of these cytokines. Although PNM had no significant inhibitory effect on the production of TNF-$\alpha$, the elevated levels of IL-1$\beta$ and IL-6 by LPS were dose-dependently reduced in PNM-treated groups. These results demonstrate that PNM has anti-inflammatory effects by inhibiting the production of proinflammatory cytokines, NO and $PGE_2$ in LPS-activated macrophage. Moreover, the reduction of NO and $PGE_2$ levels was due to the inhibition of iNOS and COX-2 protein expression by PNM.

  • PDF

Anti-inflammatory Effects of Prescription Extracts Containing Forsythia viridissima L. (연교를 함유한 처방단 추출물들의 항염증 효과)

  • Kim, Mi-Jin;Im, Kyung-Ran;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.4
    • /
    • pp.277-285
    • /
    • 2009
  • Forsythia fructus has been shown to have antioxidative, anti-inflammatory, antiviral, antitumor, antibacterial, antipyretic and anti-aging activities. This work was carried out to investigate the anti-inflammatory effects of the Korean traditional medicinal prescriptions containing Forsythia viridissima extract. The prescriptions containing Forsythia fructus were evaluated for antioxidative effects, inhibitory effects on lipoxygenase activity and on LPS-induced NO and $PGE_2$ production. In human irritation test, they did not show any adverse effect. Based on these results, we suggest that the se prescriptions hold great promise for application as an anti-inflammatory agent for trouble skins such as atopic dermatitis and acne.

Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae

  • Fernando, I.P. Shanura;Kim, Hyun-Soo;Sanjeewa, K.K. Asanka;Oh, Jae-Young;Jeon, You-Jin;Lee, Won Woo
    • ALGAE
    • /
    • v.32 no.3
    • /
    • pp.261-273
    • /
    • 2017
  • Fine dust (FD) particles have become a major contributor to air pollution causing detrimental effects on the respiratory system and skin. Although some studies have investigated the effects of FD on the respiratory system, their possible effects on the skin remain under-explored. We investigated the FD mediated inflammatory responses in keratinocytes, present in the outer layers of skin tissues and the transfer of inflammatory potential to macrophages. We further evaluated the anti-inflammatory effects of the polyphenolic derivative, diphlorethohydroxycarmalol (DPHC) isolated from Ishige okamurae against FD-induced inflammation. Size distribution of FD particles was analyzed by scanning electron microscopy. FD particles induced the production of cyclooxygenase-2, prostaglandin E2 ($PGE_2$), interleukin (IL)-$1{\beta}$, and IL-6 in HaCaT keratinocytes and the expression of nitric oxide (NO), inducible nitric oxide synthases (iNOS), $PGE_2$, tumor necrosis factor-${\alpha}$ expression in RAW 264.7 macrophages. Further, we evaluated the inflammatory potential of the culture medium of inflammation-induced HaCaT cells in RAW 264.7 macrophages and observed a marked increase in the expression of NO, iNOS, $PGE_2$, and proinflammatory cytokines. DPHC treatment markedly attenuated the inflammatory responses, indicating its effectiveness in suppressing a broad range of inflammatory responses. It also showed anti-inflammatory potential in in-vivo experiments using FD-stimulated zebrafish embryos by decreasing NO and reactive oxygen species production, while eventing cell death caused by inflammation.