• Title/Summary/Keyword: $O_3/TiO_2$/UV system

Search Result 75, Processing Time 0.022 seconds

A Comparative Study on Degradation of BTEX Vapor by O3/UV, TiO2/UV, and O3/TiO2/UV System with Operating Conditions (운전조건에 따른 O3/UV, TiO2/UV 및 O3/TiO2/UV 시스템의 BTEX 증기처리에 관한 비교 연구)

  • Kim, Kyoung-Jin;Park, Ok-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2008
  • A multilayer tower-type photoreactor, in which $TiO_2$-coated glass-tubes were installed, was used to measure the vapor-phase BTEX removal efficiencies by ozone oxidation ($O_3$/UV), photocatalytic oxidation ($TiO_2$/UV) and the combination of ozone and photocatalytic oxidation ($O_3/TiO_2$/UV) process, respectively. The experiments were conducted under various relative humidities, temperatures, ozone concentrations, gas flow rates and BTEX concentrations. As a result, the BTEX removal efficiency and the oxidation rate by $O_3/TiO_2$/UV system were highest, compared to $O_3$/UV and $TiO_2$/UV system. The $O_3/TiO_2$/UV system accelerated the low oxidation rate of low-concentration organic compounds and removed organic compounds to a large extent in a fixed volume of reactor in a short time. Therefore, $O_3/TiO_2$/UV system as a superimposed oxidation technology was developed to efficiently and economically treat refractory VOCs. Also, this study demonstrated feasibility of a technology to scale up a photoreactor from lab-scale to pilot-scale, which uses (i) a separated light-source chamber and a light distribution system, (ii) catalyst fixing to glass-tube media, and (iii) unit connection in series and/or parallel. The experimental results from $O_3/TiO_2$/UV system showed that (i) the highest BTEX removal efficiencies were obtained under relative humidity ranging from 50 to 55% and temperature ranging from 40 to $50^{\circ}C$, and (ii) the removal efficiencies linearly increased with ozone dosage and decreased with gas flow rate. When applying Langmuir-Hinshelwood model to $TiO_2$/UV and $O_3/TiO_2$/UV system, reaction rate constant for $O_3/TiO_2$/UV system was larger than that for $TiO_2$/UV system, however, it was found that adsorption constant for $O_3/TiO_2$/UV system was smaller than that for $TiO_2$/UV system due to competitive adsorption between organics and ozone.

A Study on Ozonation of Sulfamethoxazole (Sulfamethoxazole의 오존산화처리에 관한 연구)

  • Lee, Cheal-Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.459-469
    • /
    • 2019
  • The ozonation of sulfamethoxazole (SMX) was performed at 20℃ using a pilot scale countercurrent bubble column reactor. Ozonation systems were combined with UV irradiation and TiO2 addition. As the oxidation reaction proceeded in each treatment system, the pH of the sample decreased and in the O3/UV/TiO2 system, the pH change was the largest from 4.54 to 2.02. Under these experimental conditions, the scavenger impact of carbonate is negligible. The highest COD and TOC removal rate was observed in the O3/UV/TiO2 system due to the UV irradiation and the photocatalytic effect of TiO2. Also, the highest mineralization ratio(ε) value is 0.2 in the O3/UV/TiO2 system, which means theoxidation capacity of the systems. The highest SMX degradation rate constants calculated by COD and TOC values (COD and TOC) were 2.15 × 10-4 sec-1 and 1.00 × 10-4 sec-1 in the O3/UV/TiO2 system, respectively. The activation energy (Ea) of ozone treatment follows the Arrhenius law. It was calculated based on COD and TOC. Each activation energy decreased in order of single O3> O3/TiO2> O3/UV > O3/UV/TiO2 system. The result showed that ΔH is more effective than ΔS in each SMX ozontaionsystem, that is characteristic of the common oxidation reaction.

A Study on the Treatment of Dyeing Wastewater Using $TiO_2/H_2O_2/UV$ Processes ($TiO_2/H_2O_2/UV$ 공정을 이용한 염색폐수처리에 관한 연구)

  • 조일형;정효준;박경렬;성기석;이용규;이홍근
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.26-34
    • /
    • 2000
  • In order to treat the dyeing wastewater, the $UV/TiO_2/H_2O_2$ system was investigated, and proper pretreatment methods were examined to reduce the load on the system considering economical and technical efficiency. The results of this study were as follows: 1. $UV/TiO_2/H_2O_2$ system with pretreatment process was adopted, the result of Chemical coagulation and pH control units was $pH{\;}11{\;}{\rightarrow}{\;}coagulation{\;}{\rightarrow}{\;}pH{\;}4$ and the optimum dosage of $FeCl_3$ was $600mg/{\ell}$. 2. Proper dosage of $TiO_2$ in the $UV/TiO_2/H_2O_2$ system with pretreatment process was $2g/{\ell}$ and $H_2O_2$ was $1000mg/{\ell}$, UV contact time was 20min to get $200mg/{\ell}$ of $COD_{Cr}$.

  • PDF

Killing Effects of $UV-TiO_2$ Photocatalytic System on Microorganisms ($UV-TiO_2$ 광촉매 반응기에 의한 미생물의 살균효과)

  • 김중곤;신용국;이영상;김용호;김시욱
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.130-136
    • /
    • 2001
  • The killing effects of two types(one-phase reactor and two-phase reactor) of UV-TiO$_2$photocatalytic system on the microorganisms have been studied. The UV-lamp which emits maximum 39 watts at 254 nm was prepared in these system. Three types of $TiO_2$ coating method were adopted. One type is thin film coated form on the quartz tube in the reactor and another one is surface rough coated form on the glass bead. The other one is $TiO_2$-mixed alginate bead form. UV irradiation was carried out for 1 min. In case of one phase reactor, the bactericidal efficiencies of E. coli by $TiO_2$-coated quartz tube and $TiO_2$-coated glass bead were 63.2% and 89.9%, respectively. In the air-bubbling system, the bactericidal efficiency was 95%, however, the efficiency decreased to 90.6% in the non-bubbling system. In the $TiO_2$-mixed alginate bead system, bactericidal efficiency was 86%. When $H_2O$$_2$ was treated (10, 15, 20, and 25 mg/ι) to the $TiO_2$-coated glass bead reactor, bactericidal efficiency significantly increased according to the concentration of $H_2$$O_2$. Two phase reactor showed more elevated efficiency. E. coli was more sensitive to the reaction than S. cerevisiae.

  • PDF

Disinfection Characteristic of Sewage Wastewater Treatment Using Solar Light/TiO2 Film System (태양광/광촉매를 이용한 오폐수 살균특성)

  • Cho Il-Hyoung;Lee Nae-Hyun;An Sang-Woo;Kim Young-Kyu;Lee Seung-Mok
    • Journal of Environmental Science International
    • /
    • v.15 no.7
    • /
    • pp.677-688
    • /
    • 2006
  • Currently, the application of $TiO_2$ photocatalyst has been focused on purification and treatment of wastewater. However, the use of conventional $TiO_2$ slurry photocatalyst results in disadvantage of stirring during the reaction and of separation after the reaction. And the usage of artificial UV lamp has made the cost of photocatalyst treatment system high. Consequently, we studied that solar light/$TiO_2$ film system was designed and developed in order to examine disinfection characteristics of sewage wastewater treatment. The optimum conditions for disinfection such as solar light intensity, characteristic of sewage wastewater, amounts of $TiO_2$ and comparison of solar ligth/$TiO_2$ systems with UV light/$TiO_2$ system was examined. The results are as follows: (1) photocatalytic disinfection process with solar light in the presence of $TiO_2$ film more effectively killed total coliform (TC) than solar light or $TiO_2$ film absorption only. (2) The survival ratio of TC and residual ratio of organic material (BOD, CODcr) decreased with remain resistant material. (3) The survival ratio of TC and residual ratio of organic material (BOD, CODcr) decreased with the increase of amounts of $TiO_2$. (4) TC survival ratio decreased linearly with increasing UV light intensity. (5) The disinfection effect of solar light/$TiO_2$ slurry system decreased more than UV light/$TiO_2$ film systems. (6) The disinfection reaction followed first-order kinetics. We suggest that solar light instead of using artificial UV light was conducted to investigate the applicability of alternative energy source in the disinfection of TC and the degradation of organic material.

Advanced Oxidation Processes of Secondary Effluent for Reuse (재사용을 위한 하수처리장 방류수의 고급산화처리)

  • 조일형;송경석;성기석;정문호;이홍근;조경덕
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.61-68
    • /
    • 2000
  • The use of photo-catalytic processes in pollution abatement and resource has a significant economic importance. Therefore, the applications of photochemical oxidation of secondary effluent driven by UV, TiO2, TiO2/UV, H2O2/UV and TiO2/H2O2/UV, have been investigated in order to treat the secondary effluent from municipal sewage. Various experimental parameters such as BOD, CODcr, Nurbidity, total P, and SPC were examined in each photo-catalytic reaction system. The results showed that the application of single oxidant such as UV, TiO2 only has a minor effect on parameters reduction (CODcr, BOD, etc) to treat the secondary effluent, whereas the combinations of oxidants increase the removal efficiency. The best removal efficiency in every parameters was achieved by the combination of TiO2, H2O2 and UV. It was also found that the optimum amount of TiO2 for the treatment was 1g/ι to achieve water reuse standard. From the results, the photocatalytic reaction system can be an alternative as a post-treatment to treat the secondary effluent from municipal sewage.

  • PDF

Photocatalytic Decomposition of Gaseous Acetaldehyde by Metal Loaded $TiO_2$ with Ozonation

  • Cho, Ki-Chul;Yeo, Hyun-Gu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E1
    • /
    • pp.19-26
    • /
    • 2006
  • The decomposition of gaseous $CH_3CHO$ was investigated by metal loaded $TiO_2$ (pure $TiO_2,\;Pt/TiO_2,\;Pd/TiO_2,\;Mn/TiO_2\;and\;Ag/TiO_2$) with $UV/TiO_2$ process and $UV/TiO_2/O_3$ process at room temperature and atmospheric pressure. Metal loaded $TiO_2$ was prepared by photodeposition. Decomposition of $CH_3CHO$ was carried out in a flow-type photochemical reaction system using three 10W black light lamps ($300{\sim}400nm$) as a light source. The experimental results showed that the degradation rate of $CH_3CHO$ was increased with Pt and Ag on $TiO_2$ compared to pure $TiO_2$, but decreased with depositing Pd and Mn on pure $TiO_2$. The considerable increase in the degradation efficiency of the $CH_3CHO$ was found by a combination of photocatalysis and ozonation as compared to only by ozonation or photocatalysis. Loading of Pt on $TiO_2$ promoted conversion of gaseous ozone. The degradation rate of gaseous $CH_3CHO$ decreased with an increase of water vapor in the feed stream for the both $UV/TiO_2\;and\;UV/TiO_2/O_3$ processes. The pure $TiO_2$ was more affected by the water vapor than Pt loaded $TiO_2$.

A Study on Ozonation of 4-nonylphenol (4-nonylphenol의 오존산화 처리반응에 관한 연구)

  • Lee, Cheal-Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.736-743
    • /
    • 2017
  • In this study, 4-nonylphenol (4-NP), an endocrine disrupting chemical, was removed by ozone treatment processes under the various experimental conditions including UV irradiation, $TiO_2$ addition. The ozone flow rate and concentration were maintained at $1.0L{\cdot}min^{-1}$ and $70{\pm}5mg{\cdot}L^{-1}$. The pH, COD and TOC of the samples were obtained every 10 minutes for 60 minutes in laboratory scale batch reactor. We found that the combination of UV irradiation and $TiO_2$ addition for ozonation improves the removal efficiency of COD and TOC in 4-NP aqueous solution. In case of the $O_3/UV/TiO_2$ system, COD and TOC were greatly reduced to 85.3 ~ 94.0% and 89.2 ~ 97.2%, respectively. 4-NP degradation rate constants, $k_{COD}$ and $k_{TOC}$, were calculated based on the COD and TOC values. Significantly, $k_{COD}$ and $k_{TOC}$ were improved in the $O_3/UV/TiO_2$ treatment process compared with single $O_3$ process, because the oxidation and the mineralization of 4-NP were increased by generating of the hydroxyl radical. The $k_{COD}$ and $k_{TOC}$ were obtained to be $5.81{\times}10^{-4}{\sim}10.8{\times}10^{-4}sec^{-1}$ and $11.9{\times}10^{-4}{\sim}19.4{\times}10^{-4}sec^{-1}$ in the $O_3/UV/TiO_2$ process. Activation energy ($E_a$) of ozone oxidation reaction based on $k_{COD}$ and $k_{TOC}$ were increased in order of $O_3/UV/TiO_2$ < $O3/UV$ < $O_3/TiO_2$ < $O_3$ process. It was confirmed that the addition of $TiO_2$ and UV irradiation to the ozone oxidation reaction significantly reduced the $E_a$ value and the degradation of 4-NP.

A Study on the Operational Variables of the UV-TiO$_2$ Based Photocatalytic Air Cleaning System (UV-TiO$_2$ 광촉매 기반의 공기 정화 시스템의 운전조건에 대한 연구)

  • Han, Chang-Seok;Chang, Hyuk-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.293-301
    • /
    • 2008
  • A study on the operational variables of the UV-TiO$_2$ based photocatalytic air cleaning system was tried. In this study, to examine effects as various air cleaning system conditions, a duct-type reactor was made, and TiO$_2$ was immobilized on a stainless mesh. Benzene was chosen as a target compound. Removal experiments for benzene were done under different initial benzene concentration, air velocity, TiO$_2$ loading, area coated TiO$_2$ as the same TiO$_2$ loading, and UV light intensity conditions. During the experiments, relative humidity was 55%, and reactor temperature was 45$^{\circ}C$. As a result, the photocatalytic degradation of benzene decreased as the inlet concentration increased. But the photocatalytic degradation increased as the concentration boundary layer thickness, amount of TiO$_2$, area coated TiO$_2$ as the same amount of TiO$_2$, and UV light intensity increased. Based on results of current study, they can be applied to the design of air cleaning system over low level VOCs in the indoor air.

Application of Photocatalytic Degradation for Efficient Treatment of Organic Matter in Landfill Leachate in Jeju Island (제주도 매립장 침출수 중 유기물의 효율적 처리를 위한 광촉매 분해 반응의 응용)

  • Lee, Chang-Han;Lee, Taek-Kwan;Cho, Eun-Il;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.31 no.8
    • /
    • pp.677-689
    • /
    • 2022
  • In order to photocatalytically treat organic matter (CODCr) and chromaticity effectively, chemical coagulation and sedimentation processes were employed as a pretreatment of the leachate produced from landfill in Jeju Island. This was performed using FeCl3·6H2O as a coagulant. For the treated leachate, UV/TiO2 and UV/TiO2/H2O2 systems were investigated, using 4 types of UV lamps, including an ozone lamp (24 W), TiO2 as a photocatalyst, and/or H2O2 as an initiator or inhibitor for photocatalytic degradation. In the chemical coagulation and sedimentation process using FeCl3·6H2O, optimum removal was achieved with an initial pH of 6, and a coagulant dosage of 2.0 g/L, culminating in the removal of 40% CODCr and 81% chromaticity. For the UV/TiO2 system utilizing an ozone lamp and 3 g/L of TiO2, the optimum condition was obtained at pH 5. However, the treated CODCr and chromaticity did not meet the emission standards (CODCr: 400 mg/L, chromaticity: 200 degrees) in a clean area. However, for a UV/TiO2/H2O2 system using 1.54 g/L of H2O2 in addition to the above optimum UV/TiO2 system, the results were 395 mg/L and 160 degrees, respectively, which were within the emission standard limits. The effect of the UV lamp on the removal of CODCr, and chromaticity of the leachate decreased in the order of ozone (24 W) lamp > 254 nm (24 W) lamp > ozone (14 W) lamp > 254 nm (14 W) lamp. Only CODCr and chromaticity treated with the ozone (24 W) lamp met the emission standards.